
Real‑time topic‑aware influence
maximization using preprocessing
Wei Chen1†, Tian Lin2*† and Cheng Yang3†

Background
In a social network, information, ideas, rumors, and innovations can be propagated to
a large number of people because of the social influence between the connected peers
in the network. Influence maximization is the task of finding a set of seed nodes in a
social network such that the influence propagated from the seed nodes can reach the
largest number of people in the network. More technically, a social network is modeled
as a graph with nodes representing individuals and directed edges representing influ-
ence relationships. The network is associated with a stochastic diffusion model (such as
independent cascade model and linear threshold model [1]) characterizing the influence
propagation dynamics starting from the seed nodes. Influence maximization is to find a
set of k seed nodes in the network such that the influence spread, defined as the expected
number of nodes influenced (or activated) through influence diffusion starting from the
seed nodes, is maximized [1, 2].

Influence maximization has a wide range of applications including viral marketing [1,
3, 4], information monitoring and outbreak detection [5], competitive viral marketing
and rumor control [6, 7], or even text summarization [8] (by modeling a word influence

Abstract

Background: Influence maximization is the task of finding a set of seed nodes in a
social network such that the influence spread of these seed nodes based on certain
influence diffusion model is maximized. Topic-aware influence diffusion models have
been recently proposed to address the issue that influence between a pair of users are
often topic-dependent and information, ideas, innovations etc. being propagated in
networks are typically mixtures of topics.

Methods: In this paper, we focus on the topic-aware influence maximization task. In
particular, we study preprocessing methods to avoid redoing influence maximization
for each mixture from scratch.

Results: We explore two preprocessing algorithms with theoretical justifications.

Conclusions: Our empirical results on data obtained in a couple of existing studies
demonstrate that one of our algorithms stands out as a strong candidate providing
microsecond online response time and competitive influence spread, with reasonable
preprocessing effort.

Keywords: Influence maximization, Topic-aware influence modeling, Information
diffusion

Open Access

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Chen et al. Comput Soc Netw (2016) 3:8
DOI 10.1186/s40649‑016‑0033‑z

*Correspondence:
lintian06@gmail.com
†Wei Chen, Tian Lin and
Cheng Yang contributed
equally to this work

2 Institute for Advanced
Study, Tsinghua University,
No. 1 Tsinghua Yuan,
100084 Beijing, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-7979-5990
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-016-0033-z&domain=pdf

Page 2 of 19Chen et al. Comput Soc Netw (2016) 3:8

network). As a result, influence maximization has been extensively studied in the past
decade. Research directions include improvements in the efficiency and scalability of
influence maximization algorithms [9–11], extensions to other diffusion models and
optimization problems [6, 7, 12], and influence model learning from real-world data
[13–15].

Most of these works treat diffusions of all information, rumors, ideas, etc. (collectively
referred as items in this paper) as following the same model with a single set of param-
eters. In reality, however, influence between a pair of friends may differ depending on
the topic. For example, one may be more influential to the other on high-tech gadgets,
while the other is more influential on fashion topics, or one researcher is more influ-
ential on data mining topics to her peers but less influential on algorithm and theory
topics. Recently, Barbieri et al. [16] propose the topic-aware independent cascade (TIC)
and linear threshold (TLT) models, in which a diffusion item is a mixture of topics and
influence parameters for each item are also mixtures of parameters for individual topics.
They provide learning methods to learn influence parameters in the topic-aware models
from real-world data. Such topic-mixing models require new thinking in terms of the
influence maximization task, which is what we address in this paper.

In this paper, we adopt the models proposed in [16] and study efficient topic-aware
influence maximization schemes. One can still apply topic-oblivious influence maximi-
zation algorithms in online processing of every diffusion item, but it may not be effi-
cient when there are a large number of items with different topic mixtures or real-time
responses are required. Thus, we focus on preprocessing individual topic influence
such that when a diffusion item with certain topic mixture comes, the online process-
ing of finding the seed set is fast. To do so, our first step is to collect two datasets in
the past studies with available topic-aware influence analysis results on real networks
and investigate their properties pertaining to our preprocessing purpose ("Data observa-
tion" section). Our data analysis shows that in one network users and their relationships
are largely separated by different topics while in the other network they have significant
overlaps on different topics. Even with this difference, a common property we find is that
in both datasets most top seeds for a topic mixture come from top seeds of the constitu-
ent topics, which matches our intuition that influential individuals for a mixed item are
usually influential in at least one topic category.

Motivated by our findings from the data analysis, we explore two preprocessing based
algorithms ("Preprocessing based algorithms" section). The first algorithm, Best Topic
Selection (BTS), minimizes online processing by simply using a seed set for one of the
constituent topics. Even for such a simple algorithm, we are able to provide a theoretical
approximation ratio (when a certain property holds), and thus BTS serves as a baseline
for preprocessing algorithms. The second algorithm, Marginal Influence Sort (MIS), fur-
ther uses pre-computed marginal influence of seeds on each topic to avoid slow greedy
computation. We provide a theoretical justification showing that MIS can be as good as
the offline greedy algorithm when nodes are fully separated by topics.

We then conduct experimental evaluations of these algorithms and comparing them
with both the greedy algorithm and a state-of-the-art heuristic algorithm PMIA [10], on
the two datasets used in data analysis as well as a third dataset for testing scalability

Page 3 of 19Chen et al. Comput Soc Netw (2016) 3:8

("Experiments" section). From our results, we see that MIS algorithm stands out as the
best candidate for preprocessing based real-time influence maximization: it finishes
online processing within a few microseconds and its influence spread either matches or
is very close to that of the greedy algorithm.

Our work, together with a recent independent work [17], is one of the first that study
topic-aware influence maximization with focus on preprocessing. Comparing to [17],
our contributions include: (a) we include data analysis on two real-world datasets with
learned influence parameters, which shows different topical influence properties and
motivates our algorithm design; (b) we provide theoretical justifications to our algo-
rithms; (c) the use of marginal influence of seeds in individual topics in MIS is novel,
and is complementary to the approach in [17]; (d) even though MIS is quite simple, it
achieves competitive influence spread within microseconds of online processing time
rather than milliseconds needed in [17].

Preliminaries
In this section, we introduce the background and problem definition on the topic-aware
influence diffusion models. We focus on the independent cascade model [1] for ease of
presentation, but our results also hold for other models parameterized with edge param-
eters such as the linear threshold model [1].

Independent cascade model

We consider a social network as a directed graph G = (V ,E), where each node in V
represents a user, and each edge in E represents the relationship between two users.
For every edge (u, v) ∈ E, denote its influence probability as p(u, v) ∈ [0, 1], and for all
(u, v) /∈ E or u = v, we assume p(u, v) = 0.

The independent cascade (IC) model, defined in [1], captures the stochastic process
of contagion in discrete time. Initially at time step t = 0, a set of nodes S ⊆ V called
seed nodes are activated. At any time t ≥ 1, if node u is activated at time t − 1, it has one
chance of activating each of its inactive outgoing neighbor v with probability p(u, v). A
node stays active after it is activated. This process stops when no more nodes are acti-
vated. We define influence spread of seed set S under influence probability function p,
denoted σ(S, p), as the expected number of active nodes after the diffusion process ends.
As shown in [1], for any fixed p, σ(S, p) is monotone [i.e., σ(S, p) ≤ σ(T , p) for any S ⊆ T]
and submodular [i.e., σ(S ∪ {v}, p)− σ(S, p) ≥ σ(T ∪ {v}, p)− σ(T , p) for any S ⊆ T
and v ∈ V] on its seed set parameter. The next lemma further shows that for any fixed
S, σ(S, p) is monotone in p. For two influence probability functions p and p′ on graph
G = (V ,E), we denote p ≤ p′ if for any (u, v) ∈ E, p(u, v) ≤ p′(u, v). We say that influence
spread function σ(S, p) is monotone in p if for any p ≤ p′, we have σ(S, p) ≤ σ(S, p′) .

Lemma 1 For any fixed seed set S ⊆ V , σ(S, p) is monotone in p.

Proof sketch We use the following coupling method. For any edge (u, v) ∈ E, we select a
number x(u, v) uniformly at random in [0, 1]. Then for any influence probability function
p, we select edge (u, v) as a live edge if x(u, v) ≤ p(u, v) and otherwise it is a blocked edge.
All live edges form a random live-edge graph GL(p). One can verify that σ(S, p) is the

Page 4 of 19Chen et al. Comput Soc Netw (2016) 3:8

expected value of the size of node set reachable from S in random graph GL(p). Moreo-
ver, for p and p′ such that p ≤ p′, one can verify that after fixing the random numbers
x(u, v)′s, live-edge graph GL(p) is a subgraph of live-edge graph GL(p

′), and thus nodes
reachable from S in GL(p) must be also reachable from S in GL(p

′). This implies that
σ(S, p) ≤ σ(S, p′). �

We remark that using a similar idea as above we could show that influence spread in
the linear threshold (LT) model [1] is also monotone in the edge weight parameter.

Influence maximization

Given a graph G = (V ,E), an influence probability function p, and a budget k, influence
maximization is the task of selecting at most k seed nodes such that the influence spread
is maximized, i.e., finding set S∗ = S∗(k , p) such that

In [1], Kempe et al. show that the influence maximization problem is NP-hard in both the
IC model and the LT model. They propose the greedy approach for influence maximiza-
tion, as shown in Algorithm 1. Given influence probability function p, the marginal influ-
ence (MI) of a node v under seed set S is defined as MI(v|S, p) = σ(S ∪ {v}, p)− σ(S, p) ,
for any v ∈ V . The greedy algorithm selects k seeds in k iterations, and in the j-th itera-
tion it selects a node vj with the largest marginal influence under the current seed set
Sj−1 and adds vj into Sj−1 to obtain Sj. Kempe et al. use Monte Carlo simulations to obtain
accurate estimates on marginal influence MI(v|S, p), and later Chen et al. show that
indeed exact computation of influence spread σ(S, p) or marginal influence MI(v|S, p)
is #P-hard [10]. The monotonicity and submodularity of σ(S, p) in S guarantees that the
greedy algorithm selects a seed set with approximation ratio 1− 1

e − ε, that is, it returns
a seed set Sg = Sg (k , p) such that

for any small ε > 0, where ε accommodates the inaccuracy in Monte Carlo estimations.

Topic‑aware independent cascade model and topic‑aware influence maximization

Topic-aware independent cascade (TIC) model [16] is an extension of the IC model
to incorporate topic mixtures in any diffusion item. Suppose there are d base topics,
and we use set notation [d] = {1, 2, . . . , d} to denote topic 1, 2, . . . , d. We regard each

S∗(k , p) = arg max
S⊆V ,|S|≤k

σ(S, p).

σ(Sg , p) ≥

(

1−
1

e
− ε

)

σ(S∗, p),

Page 5 of 19Chen et al. Comput Soc Netw (2016) 3:8

diffusion item as a distribution of these topics. Thus, any item can be expressed as a
vector I = (�1, �2, . . . , �d) where ∀i ∈ [d], �i ∈ [0, 1] and

∑

i∈[d] �i = 1. We also refer
(�1, �2, . . . , �d) as a topic mixture. Given a directed social graph G = (V ,E), for any topic
i ∈ [d], influence probability on that topic is pi:V × V → [0, 1], and for all (u, v) /∈ E or
u = v, we assume pi(u, v) = 0. In the TIC model, the influence probability function p
for any diffusion item I = (�1, �2, . . . , �d) is defined as p(u, v) =

∑

i∈[d] �ipi(u, v), for all
u, v ∈ V (or simply p =

∑

i∈[d] �ipi). Then, the stochastic diffusion process and influence
spread σ(S, p) are exactly the same as defined in the IC model by using the influence
probability p on edges.

Given a social graph G, base topics [d], influence probability function pi for each base
topic i, a budget k and an item I = (�1, �2, . . . , �d), the topic-aware influence maximi-
zation is the task of finding optimal seeds S∗ = S∗(k , p) ⊆ V , where p =

∑

i∈[d] �ipi, to
maximize the influence spread, i.e.,

Data observation
There are relatively few studies on topic-aware influence analysis. For our study, we are
able to obtain datasets from two prior studies, one is on social movie rating network
Flixster [16] and the other is on academic collaboration network Arnetminer [14]. In
this section, we describe these two datasets, and present statistical observations on these
datasets, which will help us in our algorithm design.

Data description

We obtain two real-world datasets, Flixster and Arnetminer, which include influence
analysis results from their respective raw data, from the authors of the prior studies [14,
16].

Flixster1 is an American social movie site for discovering new movies, learning about
movies, and meeting others with similar tastes in movies. The raw data in Flixster data-
set is the action traces of movie ratings of users. The Flixster network represents users as
nodes, and two users u and v are connected by a directed edge (u, v) if they are friends
both rating the same movie and v rates the movie shortly later after u does so. The net-
work contains 29,357 nodes, 425,228 directed edges and 10 topics [16]. Barbieri et al.
[16] use their proposed TIC model and apply maximum likelihood estimation method
on the action traces to obtain influence probabilities on edges for all 10 topics. We found
that there are a disproportionate number of edges with influence probabilities higher
than 0.99, which is due to the lack of sufficient samplings of propagation events over
these edges. We smoothen these influence probability values by changing all the proba-
bilities larger than 0.99 to random numbers according to the probability distribution of
all the probabilities smaller than 0.99. We also obtain 11,659 topic mixtures, and demon-
strate the distribution of the number of topics in item mixtures in Table 1. We eliminate
individual probabilities that are too weak (∀i ∈ [d], �i < 0.01). In general, most items are

S∗ = arg max
S⊆V ,|S|≤k

σ(S, p).

1 http://www.flixster.com.

http://www.flixster.com

Page 6 of 19Chen et al. Comput Soc Netw (2016) 3:8

on a single topic only, with some two-topic mixtures. Mixtures with three or four topics
are already rare and there are no items with five or more topics.

Arnetminer2 is a free online service used to index and search academic social net-
works. The Arnetminer network represents authors as nodes and two authors have an
edge if they coauthored a paper. The raw data in the Arnetminer dataset is not the action
traces but the topic distributions of all nodes and the network structure [14]. Tang et al.
apply factor graph analysis to obtain influence probabilities on edges from node topic
distributions and the network structure [14]. The resulting network contains 5114 nodes,
34,334 directed edges and 8 topics, and all 8 topics are related to computer science, such
as data mining, machine learning, information retrieval, etc. Mixed items propagated in
such academic networks could be ideas or papers from related topic mixtures, although
there are no raw data of topic mixtures available in Arnetminer.

Table 2 provides statistics for the learned influence probabilities for every topic in
Arnetminer and Flixster dataset. Column “nonzero” provides the number of edges hav-
ing nonzero probabilities on the specific topic. Other columns are mean, standard devia-
tion, 25-, 50-% (median), and 75-% of the probabilities among the nonzero entries. The
basic statistics show similar behavior between the two datasets, such as mean probabili-
ties are mostly between 0.1 and 0.2, standard deviations are mostly between 0.1 and 0.3,
etc. Comparing among different topics, even though the means and other statistics are
similar to one another, the number of nonzero edges may have up to tenfold difference.
This indicates that some topics are more likely to propagate than others.

Topic separation on edges and nodes

For the two datasets, we would like to investigate how different topics overlap on edges
and nodes. To do so, we define the following coefficients to characterize the properties
of a social graph.

Given threshold θ ≥ 0, for every topic i, denote edge set τi(θ) = {(u, v) ∈ E | pi(u, v) > θ} ,

and node set νi(θ) = {v ∈ V |
∑

u:(v,u)∈E pi(v,u)+
∑

u:(u,v)∈E pi(u, v) > θ}. For topics i

and j, we define edge overlap coefficient as RE
ij (θ) =

|τi(θ)∩τj(θ)|

min{|τi(θ)|,|τj(θ)|}
, and node overlap coef-

ficient as RV
ij (θ) =

|νi(θ)∩νj(θ)|

min{|νi(θ)|,|νj(θ)|}
. If θ is small and the overlap coefficient is small, it means

that the two topics are fairly separated in the network. In particular, we say that the net-
work is fully separable for topics i and j if RV

ij (0) = 0, and it is fully separable for all topics
if RV

ij (0) = 0 for any pair i and j with i �= j. Then we apply the above coefficients to the
Flixster and Arnetminer datasets.

Table 3 shows the edge and node overlap coefficients with threshold θ = 0.1 for every
pair of topics in the Arnetminer dataset. Correlating with Table 2a, we see that θ = 0.1
is around the mean value for all topics. Thus it is a reasonably small value especially for
the node overlap coefficients, which is about aggregated probability of all edges incident
to a node. A clear indication in Table 3 is that topic overlap on both edges and nodes are
very small in Arnetminer, with most node overlap coefficients less than 5%. We believe
that this is because in academic collaboration network, most researchers work on one

2 arnetminer.org.

Page 7 of 19Chen et al. Comput Soc Netw (2016) 3:8

specific research area, and only a small number of researchers work across different
research areas.

Tables 4 and 5 show the edge and node overlap coefficients for the Flixster dataset.
Different from the Arnetminer dataset, both edges and nodes have significant overlaps.
For edge overlaps, even with threshold θ = 0.3, all topic pairs have edge overlap between
15 and 40%. For node overlap, we test the threshold for both 0.5–5, but the overlap

Table 1 Distribution of topic numbers of mixture items in Flixster

Mixed topics 1 2 3 4 5

Samples 11,285 354 18 2 0

(%) (96.79) (3.04) (0.15) (0.02) (0.00)

Table 2 Influence probability statistics

Topic Nonzero Mean Std. 25% 50% 75%

(a) Arnetminer

 1 3355 0.175 0.230 0.023 0.075 0.229

 2 13,331 0.093 0.154 0.010 0.031 0.100

 3 3821 0.158 0.214 0.020 0.065 0.201

 4 1537 0.217 0.243 0.038 0.120 0.316

 5 2468 0.197 0.262 0.018 0.080 0.266

 6 1236 0.240 0.273 0.034 0.122 0.353

 7 4439 0.145 0.222 0.011 0.046 0.177

 8 3439 0.162 0.220 0.022 0.069 0.201

(b) Flixster

 1 54,032 0.173 0.215 1.00E−04 0.086 0.264

 2 84,322 0.172 0.227 4.36E−05 0.067 0.260

 3 231,807 0.089 0.146 1.18E−04 0.024 0.112

 4 35,394 0.162 0.226 6.78E−03 0.050 0.250

 5 118,125 0.097 0.141 2.45E−03 0.037 0.131

 6 37,489 0.090 0.142 6.85E−03 0.033 0.100

 7 84,716 0.166 0.230 3.12E−05 0.050 0.250

 8 149,140 0.097 0.145 9.01E−04 0.036 0.131

 9 152,181 0.103 0.158 2.14E−04 0.032 0.140

 10 139,335 0.159 0.235 3.27E−05 0.029 0.250

Table 3 Edge and node overlap coefficients on Arnetminer

The upper triangle represents edge overlap coefficient when θ = 0.1. The entry on row i, column j represents REij (0.1); the
lower italic triangle represents node overlap coefficient when θ = 0.1. The entry on row i, column j represents RVij (0.1)

– 0.017 0.002 0.000 0.005 0.006 0.000 0.022

0.068 – 0.001 0.004 0.001 0.001 0.002 0.000

0.018 0.014 – 0.000 0.000 0.001 0.000 0.000

0.002 0.029 0.000 – 0.000 0.011 0.017 0.000

0.025 0.005 0.005 0.000 – 0.000 0.000 0.015

0.054 0.049 0.049 0.011 0.000 – 0.009 0.001

0.006 0.025 0.003 0.017 0.007 0.063 – 0.000

0.108 0.001 0.008 0.000 0.079 0.011 0.004 –

Page 8 of 19Chen et al. Comput Soc Netw (2016) 3:8

coefficients do not significantly change: at θ = 5, most pairs still have above 60% and up
to 89% overlap. We think that this could be explained by the nature of Flixster, which is
a movie rating site. Most users are interested in multiple categories of movies, and their
influence to their friends are also likely to be across multiple categories. It is interesting
to see that, even though the per-topic statistics between Arnetminer and Flixster are
similar, they show quite different cross-topic overlap behaviors, which can be explained
by the nature of the networks. This could be an independent research topic for further
investigations on the influence behaviors among different topics.

Table 6 summarizes the edge and node overlap coefficient statistics among all pairs of
topics for the two datasets. We can see that Arnetminer network has fairly separate top-
ics on both nodes and edges, while Flixter network have significant topic overlaps. This
may be explained by that in an academic network most researchers only work in one
research area, but in a movie network many users are interested in more than one type
of movies. Therefore, our first observation is:

Observation 1 Topic separation in terms of influence probabilities is network depend-
ent. In the Arnetminer network, topics are mostly separated among different edges and
nodes in the network, while in the Flixster network there are significant overlaps on top-
ics among nodes and edges.

Table 4 Edge overlap coefficients on Flixster

The upper triangle represents edge overlap coefficient when θ = 0.1. The entry on row i, column j represents REij (0.1); the
lower italic triangle represents edge overlap coefficient when θ = 0.3. The entry on row i, column j represents REij (0.3)

– 0.33 0.49 0.27 0.36 0.35 0.35 0.42 0.43 0.39

0.22 – 0.48 0.33 0.31 0.41 0.31 0.36 0.38 0.39

0.28 0.26 – 0.46 0.50 0.48 0.55 0.50 0.57 0.52

0.15 0.19 0.22 – 0.33 0.25 0.31 0.37 0.38 0.38

0.20 0.25 0.34 0.13 – 0.52 0.30 0.46 0.45 0.37

0.23 0.29 0.28 0.16 0.31 – 0.36 0.50 0.47 0.38

0.25 0.21 0.34 0.18 0.24 0.25 – 0.37 0.43 0.46

0.21 0.24 0.38 0.15 0.31 0.29 0.25 – 0.44 0.37

0.24 0.24 0.44 0.17 0.32 0.28 0.29 0.35 – 0.42

0.28 0.27 0.47 0.23 0.29 0.26 0.35 0.32 0.37 –

Table 5 Node overlap coefficients on Flixster

The upper triangle represents node overlap coefficient when θ = 0.5. The entry on row i, column j represents RVij (0.5); the
lower italic triangle represents node overlap coefficient when θ = 5.0. The entry on row i, column j represents RVij (5.0)

– 0.79 0.91 0.68 0.76 0.81 0.77 0.83 0.85 0.87

0.69 – 0.88 0.82 0.76 0.88 0.75 0.74 0.77 0.84

0.83 0.64 – 0.93 0.92 0.95 0.91 0.92 0.91 0.87

0.53 0.67 0.75 – 0.77 0.63 0.78 0.83 0.85 0.89

0.58 0.70 0.87 0.50 – 0.90 0.73 0.84 0.85 0.85

0.76 0.83 0.86 0.46 0.91 – 0.86 0.93 0.92 0.91

0.71 0.53 0.72 0.62 0.72 0.78 – 0.77 0.81 0.88

0.72 0.57 0.82 0.60 0.85 0.89 0.59 – 0.83 0.84

0.74 0.53 0.84 0.62 0.82 0.89 0.63 0.73 – 0.83

0.89 0.74 0.81 0.83 0.88 0.89 0.82 0.82 0.84 –

Page 9 of 19Chen et al. Comput Soc Netw (2016) 3:8

Sources of seeds in the mixture

Our second observation is more directly related to influence maximization. We would
like to see if seeds selected by the greedy algorithm for a topic mixture are likely com-
ing from top seeds for each individual topic. Intuitively, it seems reasonable to assume
that top influencers for a topic mixture are likely from top influencers in their constituent
topics.

To check the source of seeds, we randomly generate 50 mixtures of two topics for
both Arnetminer and Flixster, and use the greedy algorithm to select seeds for the
mixture and the constituent topics. We then check the percentage of seeds in the
mixture that is also in the constituent topics. Table 7 shows our test results (Flix-
ster (Dirhilect) is the result using a Dirichlet distribution to generate topic mixtures;
see "Experiments" section for more details). Our observation below matches our
intuition:

Observation 2 Most seeds for topic mixtures come from the seeds of constituent top-
ics, in both Arnetminer and Flixster networks.

For Arnetminer, it is likely due to the topic separation as observed in Table 3. For Flix-
ster, even though topics have significant overlaps, these overlaps may result in many
shared seeds between topics, which would also contribute as top seeds for topic mixtures.

Preprocessing based algorithms
Topic-aware influence maximization can be solved by using existing influence maximi-
zation algorithms such as the ones in [1, 10]: when a query on an item I = (�1, �2, . . . , �d)
comes, the algorithm first computes the mixed influence probability function
p =

∑

j �jpj, and then applies existing algorithms using parameter p. This, however,
means that for each topic mixture influence maximization has to be carried out from
scratch, which could be inefficient in large-scale networks.

Table 6 Overlap coefficient statistics for all topic pairs

Min Mean Max

Arnetminer: R
E
ij (0.1)

0 0.0041 0.022

Arnetminer: R
V
ij (0.1)

0 0.0236 0.108

Flixster: R
E
ij (0.1)

0.25 0.4058 0.57

Flixster: R
E
ij (0.3)

0.13 0.2662 0.47

Flixster: R
V
ij (0.5)

0.63 0.836 0.95

Flixster: R
V
ij (5.0)

0.46 0.734 0.91

Table 7 Percentage of seeds in topic mixture that are also seeds of constituent topics

Arnetminer Flixster (random) Flixster (Dirichlet)

Seeds overlap (%) 94.80 81.16 85.24

Page 10 of 19Chen et al. Comput Soc Netw (2016) 3:8

In this section, motivated by observations made in "Data observation" section, we
introduce two preprocessing based algorithms that cover different design choices. The
first algorithm Best Topic Selection focuses on minimizing online processing time, and
the second one MIS uses pre-computed marginal influence to achieve both fast online
processing and competitive influence spread. For convenience, we consider the budget
k as fixed in our algorithms, but we could extend the algorithms to consider multiple k
values in preprocessing.

Best topic selection (BTS) algorithm

The idea of our first algorithm is to minimize online processing by simply selecting a
seed set for one of the constituent topics in the topic mixture that has the best influence
performance, and thus we call it Best Topic Selection (BTS) algorithm. More specifically,
given an item I = (�1, �2, . . . , �d), if we have pre-computed the seed set Sgi = Sg (k , �pi)
via the greedy algorithm for each topic i, then we would simply use the seed set Sgi′ that
gives the best influence spread, i.e., i′ = arg maxi∈[d] σ(S

g
i , �ipi). However, in the pre-

processing stage, the topic mixture (�1, �2, . . . , �d) is not guaranteed to be pre-computed
exactly. To deal with this issue, we pre-compute influence spread for a number of land-
mark points for each topic, and use rounding method in online processing to complete
seed selection, as we explain in more detail now.

Preprocess stage

Denote constant set � = {�c0, �
c
1, �

c
2, . . . , �

c
m} as a set of landmarks, where

0 = �
c
0 < �

c
1 < · · · < �

c
m = 1. For each � ∈ � and each topic i ∈ [d], we pre-compute

Sg (k , �pi) and σ(Sg (k , �pi), �pi) in the preprocessing stage, and store these values for
online processing. In our experiments, we use uniformly selected landmarks and show
that they are good enough for influence maximization. More sophisticated landmark
selection method may be applied, such as the machine learning based method in [17].

Online stage

We define two rounding notations that return one of the neighboring landmarks in
� = {�c0, �

c
1, . . . , �

c
m}: for any � ∈ [0, 1], � is denoted as rounding � down to �cj where

�
c
j ≤ � < �

c
j+1 and �cj , �

c
j+1 ∈ �, and � as rounding up to �cj+1 where �cj < � ≤ �

c
j+1 and

�
c
j , �

c
j+1 ∈ �. Given I = (�1, �2, . . . , �d), let D+

I = {i ∈ [d] | �i > 0}. With the pre-com-
puted Sg (k , �pi) and σ(Sg (k , �pi), �pi) for every � ∈ � and every topic i, the BTS algorithm
is given in Algorithm 2. The algorithm basically rounds down the mixing coefficient on
every topic to (�1, . . . , �d), and then returns the seed set Sg (k , �i′pi′) that gives the largest
influence spread at the round-down landmarks: i′ = arg maxi∈D+

I
σ(Sg (k , �ipi), �ipi).

Page 11 of 19Chen et al. Comput Soc Netw (2016) 3:8

BTS is rather simple since it directly outputs a seed set for one of the constituent top-
ics. However, we show below that even such a simple scheme could provide a theoreti-
cal approximation guarantee (if the influence spread function is sub-additive as defined
below). Thus, we use BTS as a baseline for preprocessing based algorithms.

We say that influence spread function σ(S, p) is c-sub-additive in p for some constant
c if for every set S ⊆ V with |S| ≤ k and every mixture (�1, �2, . . . , �d), σ(S,

∑

i∈D+
I
�ipi)

≤ c
∑

i∈D+
I
σ(S, �ipi). The sub-additivity property above means that the influence spread

of any seed set S in any topic mixture will not exceed constant times of the sum of the
influence spread of the same seed set for each individual topic. It is easy to verify that,
when the network is fully separable for all topic pairs, σ(S, p) is 1-sub-additive. The only
counterexample to the sub-additivity assumption that we could find is a tree structure
where even layer edges are for one topic and odd layer edges are for another topic. Such
structures are rather artificial, and we believe that for real networks the influence spread
is c-sub-additive in p with a reasonably small constant c.

We define µmax = maxi∈[d],�∈[0,1]
σ(Sg (k ,�pi),�pi)
σ (Sg (k ,�pi),�pi)

, which is a value controlled by preproc-
essing. A fine-grained landmark set � could make µmax close to 1. The following Theo-
rem 1 guarantees the theoretical approximation ratio of Algorithm 2.

Theorem 1 If the influence spread function σ(S, p) is c-sub-additive in p, Algorithm 2
achieves 1−e−1

c|D+
I |µmax

 approximation ratio for item I = (�1, �2, . . . , �d).

Proof Denote S∗ = S∗(k , p), S∗i = S∗(k , �ipi), S
g
i = Sg (k , �ipi) and Sgi = Sg (k , �ipi) .

Since σ(S, p) is monotone (Lemma 1) and c-sub-additive in p, it implies
σ(S∗, p) = σ(S∗,

∑

i∈D+
I
�ipi) ≤ c

∑

i∈D+
I
σ(S∗, �ipi) ≤ c

∑

i∈D+
I
σ(S∗, �ipi). From [1],

we know σ(S∗(k , p0), p0) ≤ 1
1−e−1 σ(S

g (k , p0), p0) holds for any p0 in Algorithm 1.

Thus we have, for each i ∈ D+
I , σ(S∗, �ipi) ≤ σ(S

∗

i , �ipi) ≤
σ(S

g
i ,�ipi)

1−e−1 ≤
µmax ·σ(S

g
i ,�ipi)

1−e−1 .

According to line 2 of Algorithm 2, i′ satisfies σ(Sgi′ , �i′pi′) = maxi∈D+
I
σ(S

g
i , �ipi), and

σ(S
g
i′ , �i′pi′) ≤ σ(S

g
i′ , �i′pi′). Thus, connecting all the inequalities, we have σ(S∗, p)

≤ c|D+
I |µmax

1−e−1 σ(S
g
i′ , �i′pi′). Therefore, Algorithm 2 achieves approximation ratio of

1
c|D+

I |µmax
(1− 1

e) under the sub-additive assumption. �

The approximation ratio given in the theorem is a conservative bound for the worst
case (e.g., a common setting may be c = 1, µmax = 1.5, |D+

I | = 2). Tighter online bound
in our experiment section based on [5] shows that Algorithm 2 performs much better
than the worst case scenario.

Marginal influence sort (MIS) algorithm

Our second algorithm derives the seed set from pre-computed seed set of constituent
topics, which is based on Observation 2. Moreover, it uses marginal influence informa-
tion pre-computed to help select seeds from different seed sets. Our idea is partially
motivated from Observation 1, especially the observation on Arnetminer dataset, which
shows that in some cases the network could be well separated among different top-
ics. Intuitively, if nodes are separable among different topics, and each node v is only

Page 12 of 19Chen et al. Comput Soc Netw (2016) 3:8

pertinent to one topic i, the marginal influence of v would not change much whether it
is for a mixed item or the pure topic i. The following lemma makes this intuition precise
for the extreme case of fully separable networks.

Lemma 2 If a network is fully separable among all topics, then for any v ∈ V and topic
i ∈ [d] such that σ(v, pi) > 1, for any item I = (�1, �2, . . . , �d), for any seed set S ⊆ V , we
have MI(v|S, �ipi) = MI(v|S, p), where p =

∑

j∈[d] �jpj .

Proof sketch Let Gi = (Vi,Ei) be the subgraph of G generated by edges (u, w) such that
pi(u,w) > 0 and their incident nodes. It is easy to verify that when the network is fully
separable among all topics, Gi and Gj are disconnected for any i �= j. In this case, we have
(a) for any node v and topic i such that σ(v, pi) > 1, v ∈ Vi; (b) for any edge (u,w) ∈ Ei ,
p(u,w) = �ipi(u,w); and (c) σ(S, p′) =

∑

j∈[d] σ(S ∩ Vj , p
′) for any p′. With the above

property, a simple derivation following the definition of marginal influence will lead to
MI(v|S, �ipi) = MI(v|S, p). �

The above lemma suggests that we can use the marginal influence of a node on each
topic when dealing with a mixture of topics. Algorithm MIS is based on this idea.

Preprocess stage

Recall the detail of Algorithm 1, given any fixed probability p and budget k, for
each iteration j = 1, 2, . . . , k, it calculates vj to maximize marginal influence
MI(vj|Sj−1, p) and let Sj = Sj−1 ∪ {vj} every time, and output Sg (k , p) = Sk as seeds.
Let MIg (vj , p) = MI(vj|Sj−1, p), if vj ∈ Sg (k , p), and 0 otherwise. MIg (vj , p) is the mar-
ginal influence of vj according to the greedy selection order. Suppose the landmark set
� = {�c0, �

c
1, �

c
2, . . . , �

c
m}. For every � ∈ �, we pre-compute Sg (k , �pi), for every single

topic i ∈ [d], and cache MIg (v, �pi), ∀v ∈ Sg (k , �pi) in advance by Algorithm 1.

Online stage

Marginal Influence Sort (MIS) algorithm as described in Algorithm 3. Given an
item I = (�1, . . . , �d), the online processing stage first rounding down the mixture to
I ′ = (�1, . . . , �d), and then use the union V g = ∪i∈[d],�i>0S

g (k , �ipi) as seed candidates.
If a node appears in multiple pre-computed seed sets, we add their marginal influence
in each set together (line 4). Then we simply sort all nodes in V g according to their com-
puted marginal influence f(v) and return the top-k nodes as seeds.

Although MIS is a heuristic algorithm, it does guarantee the same performance as the
original greedy algorithm in fully separable networks when the topic mixtures is from

Page 13 of 19Chen et al. Comput Soc Netw (2016) 3:8

the landmark set, as shown by the theorem below. Note that in a fully separable network,
it is reasonable to assume that seeds for one topic comes from the subgraph for that
topic, and thus seeds from different topics are disjoint.

Theorem 2 Suppose I = (�1, �2, . . . , �d), where each �i ∈ �, and Sg (k , �1p1), . . .,
Sg (k , �dpd) are disjoint. If the network is fully separable for all topics, the seed set calcu-
lated by Algorithm 3 is one of the possible sequences generated by Algorithm 1 under the
mixed influence probabilityp =

∑

i∈[d] �ipi.

Proof sketch Denote v1, v2, . . . , vk ∈ V g as the final seeds selected for the topic mixture
in this order, and let S0 = ∅ and Sℓ = Sℓ−1 ∪ {vℓ}, for ℓ = 1, 2, . . . , k. Since the network
is fully separable and topic-wise seed sets are disjoint, by Lemma 4.1 we can get that
v1, v2, . . . , vk are selected from topic-wise seeds sets, and ∀v ∈ V g, f (v) = MI(v|Sℓ−1, p) .
We can prove that vℓ = arg maxv∈V \Sl−1

 MI(v|Sℓ−1, p), ∀ℓ = 1, 2, . . . , k by induc-
tion. It is straightforward to see that v1 = arg maxv∈V MI(v|∅, p). Assume it holds for
ℓ = j ∈ {1, 2, . . . , k − 1}. Then, for ℓ = j + 1, for a contradiction we suppose that the
(j + 1)-th seed v′ is chosen from V \ V g other than vj+1, i.e., MI(v′|Sj , p) > MI(vj+1|Sj , p) .
Denote i′ such that σ(v′, pi′) > 1. Since budget k > j, we can find a node
u ∈ Sg (k , �i′pi′) \ Sj, such that MI(u|Sj , �i′pi′) ≥ MI(v′|Sj , �i′pi′), and u is selected before
vj+1, which is a contradiction. Therefore, we will conclude that v1, v2, · · ·, vk is one possi-
ble sequence from the greedy algorithm. �

The theorem suggests that MIS would work well for networks that are fairly separated
among different topics, which are verified by our test results on the Arnetminer dataset.
Moreover, even for networks that are not well separated, it is reasonable to assume that
the marginal influence of nodes in the mixture is related to the sum of its marginal influ-
ence in individual topics, and thus we expect MIS to work also competitively in this case,
which is verified by our test results on the Flixster dataset.

Experiments
We test the effectiveness of our algorithms by using a number of real-world datasets, and
compare them with state-of-the-art influence maximization algorithms.

Algorithms for comparison

In our experiments, we test our topic-aware preprocessing based algorithms MIS and
BTS comprehensively. We also select three classes of algorithms for comparison: (a)
Topic-aware algorithms: The topic-aware greedy algorithm (TA-Greedy) and a state-
of-the-art fast heuristic algorithm PMIA (TA-PMIA) from [10]; (b) Topic-oblivious
algorithms: The topic-oblivious greedy algorithm (TO-Greedy), degree algorithm (TO-
Degree) and random algorithm (Random); (c) Simple heuristic algorithms that do not
need preprocessing: The topic-aware PageRank algorithm (TA-PageRank) from [18] and
WeightedDegree algorithm (TA-WeightedDegree).

The greedy algorithm we use employs lazy evaluation [5] to provide hundreds of time
of speedup to the original Monte Carlo based greedy algorithm [1], and also provides the
best theoretical guarantee. PMIA is a fast heuristic algorithm for the IC model based on
trimming influence propagation to a tree structure and fast recursive computation on

Page 14 of 19Chen et al. Comput Soc Netw (2016) 3:8

trees, and it achieves thousand fold speedup comparing to optimized greedy approxima-
tion algorithms with a small degradation on influence spread [10] (in this paper, we set a
small threshold θ = 1/1280 to alleviate the degradation).

Topic-oblivious algorithms work under previous IC model that does not identify top-
ics, i.e., it takes the fixed mixture ∀j ∈ [d], �j =

1
d
. TO-Greedy runs greedy algorithm for

previous IC model and uses the top-k nodes as its seeds. TO-Degree outputs the top-k
nodes with the largest degree based on the original graph. Random simply chooses k
nodes at random.

We also carefully choose two simple heuristic algorithms that do not need preprocess-
ing. TA-PageRank uses the probability of the topic mixture as its transfer probability,
and runs PageRank algorithm to select k nodes with top rankings. The damping factor is
set to 0.85. TA-WeightedDegree uses the degrees weighted by the probability from topic
mixtures, and selects top k nodes with the highest weighted degrees.

Finally, we study the possibility of acceleration for large graphs by comparing PMIA
with greedy algorithm in preprocessing stage. Therefore, we denote MIS and BTS
algorithms, utilizing the seeds and marginal influence from greedy and PMIA, as
MIS[Greedy], BTS[Greedy] and MIS[PMIA], BTS[PMIA], respectively.

Experiment setup

We conduct all the experiments on a computer with 2.4 GHz Intel(R) Xeon(R) E5530
CPU, 2 processors (16 cores), 48G memory, and an operating system of Windows Server
2008 R2 Enterprise (64 bits). The code is written in C++ and compiled by Visual Studio
2010.

We test these algorithms on the Flixster and Arnetminer datasets as we described in
"Data observation" section, which have the advantage that the influence probabilities of
all edges on all topics are learned from real action trace data or node topic distribution
data. To further test the scalability of different algorithms, we use a larger network data
DBLP, which is also used in [10]. DBLP3 is an academic collaboration network extracted
from the online service, where nodes represent authors and edges represent coauthoring
relationships. It contains 650K nodes and 2 million edges. As DBLP does not have influ-
ence probabilities from the real data, we simulate two topics according to the joint distri-
bution of topics 1 and 2 in the Flixster and follow the practice of the TRIVALENCY
model in [10] to rescale it into 0.1, 0.01, or 0.001, standing for strong, medium, and low
influence, respectively.

In terms of topic mixtures, in practice and also supported by our data, an item is usu-
ally a mixture of a small number of topics, thus our tests focus on testing topic mixtures
from two topics. First, we test random samples to cover most common mixtures as fol-
lows. For these three datasets, we use 50 topic mixtures as testing samples.4 Each topic
mixture is uniformly selected from all possible two topic mixtures. Second, since we
have the data of real topic mixtures in Flixster dataset, we also test additional cases fol-
lowing the same sampling technique described in "Data description" section of [17]. We
estimate the Dirichlet distribution that maximizes the likelihood over topics learned

3 http://www.DBLP.org.
4 50 samples is mainly to fit for the slow greedy algorithm.

http://www.DBLP.org

Page 15 of 19Chen et al. Comput Soc Netw (2016) 3:8

from the data. After the distribution is learned, we resample 50 topic mixtures for
testing.

In the preprocessing stage, we use two algorithms, Greedy and PMIA, to pre-compute
seed sets for MIS and BTS, except that for the DBLP dataset, which is too large to run
the greedy algorithm, we only run PMIA. Algorithms MIS and BTS need to pre-select
landmarks �. In our tests, we use 11 equally distant landmarks {0, 0.1, 0.2, . . . , 0.9, 1}.
Each landmarks can be pre-computed independently, therefore we run them on 16 cores
concurrently in different processes.

We choose k = 50 seeds in all our tests and compare the influence spread and running
time of each algorithm. For the greedy algorithm, we use 10,000 Monte Carlo simula-
tions. We also use 10,000 simulation runs and take the average to obtain the influence
spread for each selected seed set.

In addition, we apply offline bound and online bound to estimate influence spread of
optimal solutions. Offline bound is the influence spread of any greedy seeds multiplied
by factor 1/(1− e−1). The online bound is based on Theorem 4 in [5]: for any seed set
S, its influence spread plus the sum of top k marginal influence spread of k other nodes
is an upper bound on the optimal k seed influence spread. We use the minimum of the
upper bounds among the cases of S = ∅ and S being one of the greedy seed sets selected.

Experiment results

Additional file 1: Figure S1 shows the total influence spread results on Arnetminer with
random samples (a); Flixster with random and Dirichlet samples, (b) and (c), respec-
tively; and DBLP with random samples (d). Table 8a shows the preprocessing time based
on greedy algorithm and PMIA algorithm on three datasets. Table 8b shows the aver-
age online response time of various algorithms in finding 50 seeds (topic-oblivious algo-
rithms always use the same seeds and thus are not reported).

Table 8 Running time statistics

Arnetminer Flixster DBLP

(|�| = 8× 11) (|�| = 10× 11) (|�| = 2× 11)

Total Max Total Max Total Max

(a) Preprocessing time

 Greedy 8.8 h 1.2 h 26.3 days 3.5 days ≥100 days ≥7 days

 PMIA 37 s 7.1 s 2.28 h 12.6 min 9.6 min 4.2 min

Arnetminer Flixster DBLP

Random Dirichlet

(b) Average online response time

 TA-Greedy 9.3 min 1.5 days 20 h N/A

 TA-PMIA 0.52 s 5.5 min 3.8 min 58 s

 MIS (µs) 2.85 2.37 3.84 2.09

 BTS (µs) 1.20 2.35 1.42 0.49

 TA-PageRank (s) 0.15 2.08 2.30 41

 TA-WeightedDegree 8.5 ms 29.9 ms 30.7 ms 0.32 s

Page 16 of 19Chen et al. Comput Soc Netw (2016) 3:8

As is shown in Table 8a, we run each landmark concurrently, and count both the total
CPU time and the maximum time needed for one landmark. While the total time shows
the cumulative preprocessing effort, the maximum time shows the latency when we use
parallel preprocessing on multiple cores. The results indicate that the greedy algorithm
is suitable for small graphs but infeasible for large graphs like DBLP, while PMIA is a
scalable preprocessing solution for large graphs. For this reason, we test two preprocess-
ing techniques and also compare their performance.

For the Arnetminer dataset (Additional file 1: Figure S1), it clearly separates all
algorithms into three tiers: the top tier is TA-Greedy, TA-PMIA, MIS[Greedy] and
MIS[PMIA]; the middle tier is TA-WeightedDegree, BTS[Greedy], BTS[PMIA] and
TA-PageRank; and the lower tier is topic-oblivious algorithms TO-Greedy, TO-Degree
and Random. In particular, we measure the gaps of influence spread among different
algorithms. We observe that the gap of top tiers are negligible, because TA-PMIA,
MIS[Greedy] and MIS[PMIA] are only 0.61, 0.32 and 1.08% smaller than TA-Greedy,
respectively; the middle tier algorithms BTS[Greedy], BTS[PMIA], TA-WeightedDe-
gree and TA-PageRank are 4.06, 4.68, 4.67 and 26.84% smaller, respectively; and the
lower tier TO-Greedy, TO-Degree and Random have difference of 28.57, 56.75 and
81.48%, respectively. (All percentages reported in this section are averages over influence
spread from one seed to 50 seeds.)

The detailed analyses are listed as follows: First, topic-oblivious algorithms does not
perform well in topic-aware environment. Based on Observation 1, when topics are sep-
arated, algorithms ignoring topic mixtures cannot find influential seeds for all topics,
and thus do not have good influence spread. Second, MIS[Greedy] and MIS[PMIA]
almost match the influence spread of those of TA-Greedy and TA-PMIA. As indicated
from offline and online bounds, MIS[Greedy], BTS[Greedy] are 76.9 and 72.5% of the
online bound, which demonstrates their effectiveness is better than their conservative
theoretical bounds (1− e−1 ≈ 63.2%). The MIS algorithm runs noticeably fast in online
processing, finishing 50 seeds selection in just a few microseconds (Table 8b), which is
three orders of magnitude faster than the millisecond response time reported in [17],
and at least three orders of magnitude faster than any other topic-aware algorithms. This
is because it relies on pre-computed marginal influence and only a sorting process is
needed online. Third, BTS[Greedy] and BTS[PMIA] are not expected to be better than
MIS[Greedy] and MIS[PMIA], since BTS is a baseline algorithm only selecting a seed
set from one topic. However, due to the preprocessing stage, we find that it can even
perform better than other simple topic-aware heuristic algorithms that have short online
response time. In addition, replacing the greedy algorithm with PMIA in the preproc-
essing stage, MIS and BTS only lose 0.76 and 0.62% in influence spread, indicating that
PMIA is a viable choice for preprocessing, which greatly reduces the offline preprocess-
ing time (Table 8a).

What we can conclude from tests on Arnetminer is that, for networks where topics
are well separated among nodes and edges such as in academic networks, utilizing pre-
processing can greatly save the online processing time. In particular, MIS algorithm is
well suited for this environment achieving microsecond response time with very small
degradation in seed quality.

Page 17 of 19Chen et al. Comput Soc Netw (2016) 3:8

For Flixster dataset (Additional file 1: Figure S1), we see that the influence spread of
TA-PMIA, MIS[Greedy], MIS[PMIA], BTS[Greedy] and BTS[PMIA] are 1.78, 3.04,
4.58, 3.89 and 5.29% smaller than TA-Greedy for random samples, and 1.41, 1.94, 3.37,
2.31 and 3.59% smaller for Dirichlet samples, respectively. In Flixster, we can see that
for networks where topics overlap with one another on nodes, our preprocessing based
algorithms can still perform quite well. This is because most seeds of topic mixtures are
from the constituent topics (Observation 2). On the other hand, the influence of TA-
WeightedDegree, TA-PageRank and TO-Greedy will suffer a noticeable degeneration
demonstrated from two curves. In terms of online response time (Table 8b), the result is
consistent with the result for Arnetminer: only MIS and BTS can achieve microsecond
level online response, and all other topic-aware algorithms need at least milliseconds
since they at least need a ranking computation among all nodes in the graph. In addition,
TA-PMIA on Flixster is much slower than on Arnetminer, because both the network
size and the computed MIA tree size are much larger, indicating that PMIA is not suit-
able in providing stable online response time. In contrast, the response time of MIS and
BTS do not change significantly among different graphs.

In DBLP (Additional file 1: Figure S1), the graph is too large to run greedy algorithm,
thus we take TA-PMIA as the baseline algorithm to compare with other algorithms. For
different algorithms, the influence spread is close to each other, and our results show
that MIS[PMIA] has equal competitive influence spread with TA-PMIA (0.44% slightly
larger), while BTS[PMIA], TA-WeightedDegree, TO-Degree and TA-PageRank are
1.33, 1.83, 6.05 and 35.54% smaller than TA-PMIA, respectively. Combining the running
time in Table 8, we find that the greedy algorithm is not suitable for preprocessing for
large graphs, while PMIA can be used in this case.

To summarize, the greedy algorithm has the best influence spread performance, but
is slow and not suitable for large-scale networks or fast response time requirements.
PMIA as a fast heuristic can achieve reasonable performance in both influence spread
and online processing time, but its response time varies significantly depending on
graph size and influence probability parameters, and could take minutes or longer to
complete. Our proposed MIS emerges as a strong candidate for fast real-time process-
ing of topic-aware influence maximization task: it achieves microsecond response time,
which does not depend on graph size or influence probability parameters, while its influ-
ence spread matches or is very close to the best greedy algorithm and outperforms other
simple heuristics. Furthermore, in large graphs where greedy is too slow to finish, PMIA
is a viable choice for preprocessing, and our MIS using PMIA as the preprocessing algo-
rithm achieves almost the same influence spread as MIS using the greedy algorithm for
preprocessing.

Related work
Domingos and Richardson [3, 4] are the first to study influence maximization in an algo-
rithmic framework. Kempe et al. [1] first formulate the discrete influence diffusion mod-
els including the independent cascade model and linear threshold model, and provide
the first batch of algorithmic results on influence maximization.

A large body of work follows the framework of [1]. One line of research improves on
the efficiency and scalability of influence maximization algorithms [9–11, 19]. Others

Page 18 of 19Chen et al. Comput Soc Netw (2016) 3:8

extend the diffusion models and study other related optimization problems [6, 7, 12].
A number of studies propose machine learning methods to learn influence models and
parameters [13–15]. A few studies look into the interplay of social influence and topic
distributions [14, 20–22]. They focus on inference of social influence from topic distribu-
tions or joint inference of influence diffusion and topic distributions. They do not provide
a dynamic topic-aware influence diffusion model nor study the influence maximization
problem. Barbieri et al. [16] introduce the topic-aware influence diffusion models TIC
and TLT as extensions to the IC and LT models. They provide maximum-likelihood
based learning method to learn influence parameters in these topic-aware models. We
use the their proposed models and their datasets with the learned parameters.

A recent independent work by Aslay et al. [17] is the closest one to our work. Their
work focuses on index building in the query space while we use pre-computed marginal
influence to help guiding seed selection, and thus the two approaches are complemen-
tary. Other differences have been listed in the introduction and will not be repeated here.

Future work
One possible follow-up work is to combine the advantages of our approach and the
approach in [17] to further improve the performance. Another direction is to study fast
algorithms with stronger theoretical guarantee. An important work is to gather more
real-world datasets and conduct a thorough investigation on the topic-wise influence
properties of different networks, similar to our preliminary investigation on Arnetminer
and Flixster datasets. This could bring more insights to the interplay between topic dis-
tributions and influence diffusion, which could guide future algorithm design.

Authors’ contributions
All authors participated in the discussion and algorithm design, and thus equally contributed to the work. WC conceived
the idea, coordinated the study and helped to draft the manuscript. TL carried out theoretical analysis, and drafted the
manuscript. CY implemented the code, and did empirical studies. All authors read and approved the final manuscript.

Author details
1 Microsoft Research, No. 5 Danling Street, 100080 Beijing, China. 2 Institute for Advanced Study, Tsinghua University,
No. 1 Tsinghua Yuan, 100084 Beijing, China. 3 Department of Computer Science and Technology, Tsinghua University,
No. 1 Tsinghua Yuan, 100084 Beijing, China.

Acknowledgements
We would like to thank Nicola Barbieri and Jie Tang, the authors of [14, 16], respectively, for providing Flixster and Arnet-
miner datasets.

Competing interests
The authors declare that they have no competing interests.

Received: 12 February 2016 Accepted: 22 October 2016

References
 1. Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the

ninth ACM SIGKDD international conference on knowledge discovery and data mining. 2003. p. 137–46.

Additional file

Additional file 1: Figure S1. Influence spread of algorithms. Subfigures: (a) Arnetminer on random samples; (b)
Flixster on random samples; (c) Flixster on Dirichlet samples; (d) DBLP on random samples. Legends are ordered (left
to right, top to bottom) according to influence spread.

http://dx.doi.org/10.1186/s40649-016-0033-z

Page 19 of 19Chen et al. Comput Soc Netw (2016) 3:8

 2. Chen W, Lakshmanan LVS, Castillo C. Information and influence propagation in social networks. San Rafael: Morgan
& Claypool Publishers; 2013.

 3. Domingos P, Richardson M. Mining the network value of customers. In: KDD’01, New York: ACM; 2001. p. 57–66.
 4. Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: KDD’02. New York: ACM; 2002. p.

61–70.
 5. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks.

In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. New
York: ACM; 2007. p. 420–9.

 6. Budak C, Agrawal D, Abbadi AE. Limiting the spread of misinformation in social networks. In: world wide web. 2011.
p. 665–74.

 7. He X, Song G, Chen W, Jiang Q. Influence blocking maximization in social networks under the competitive linear
threshold model. In: Proceedings of the 12th SIAM international conference on data mining. SDM; 2012. p. 463–74.

 8. Wang C, Yu X, Li Y, Zhai C, Han J. Content coverage maximization on word networks for hierarchical topic summari-
zation. In: CIKM. 2013. p. 249–58.

 9. Chen W, Wang Y, Yang S. Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIG-
KDD international conference on knowledge discovery and data mining. New York: ACM; 2009. p. 199–208.

 10. Wang C, Chen W, Wang Y. Scalable influence maximization for independent cascade model in large-scale social
networks. Data Min Knowl Discov. 2012;25(3):545–76.

 11. Goyal A, Lu W, Lakshmanan LV, Simpath. An efficient algorithm for influence maximization under the linear thresh-
old model. In: Data Mining (ICDM), 2011 IEEE 11th International Conference. New Jersey: IEEE; 2011. p. 211–20.

 12. Bhagat S, Goyal A, Lakshmanan, LVS. Maximizing product adoption in social networks. In: WSDM. 2012. p. 603–12.
 13. Saito K, Nakano R, Kimura M. Prediction of information diffusion probabilities for independent cascade model. In:

Knowledge-based intelligent information and engineering systems. Berlin: Springer; 2008. p. 67–75.
 14. Tang J, Sun J, Wang C, Yang Z. Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM

SIGKDD international conference on knowledge discovery and data mining. New York: ACM; 2009. p. 807–16.
 15. Goyal A, Bonchi F, Lakshmanan LV. Learning influence probabilities in social networks. In: Proceedings of the Third

ACM international conference on web search and data mining. New York: ACM; 2010. p. 241–50.
 16. Barbieri N, Bonchi F, Manco G. Topic-aware social influence propagation models. Knowl Inform Syst.

2013;37(3):555–84.
 17. Aslay C, Barbieri N, Bonchi F, Baeza-Yates R. Online topic-aware influence maximization queries. In: EDBT. 2014. p.

295–306.
 18. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comp Netw Isdn Syst. 1998;30:107–17.
 19. Goyal A, Lu W, Lakshmanan LV. Celf++: optimizing the greedy algorithm for influence maximization in social net-

works. In: Proceedings of the 20th international conference companion on world wide web. New York: ACM; 2011.
p. 47–8.

 20. Liu L, Tang J, Han J, Jiang M, Yang S. Mining topic-level influence in heterogeneous networks. In: Proceedings of the
19th ACM international conference on information and knowledge management. New York: ACM; 2010. p. 199–208.

 21. Weng J, Lim E-P, Jiang J, He Q. Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the Third
ACM international conference on web search and data mining. New York: ACM; 2010. p. 261–70.

 22. Lin CX, Mei Q, Han J, Jiang Y, Danilevsky M. The joint inference of topic diffusion and evolution in social communi-
ties. In: Data mining (ICDM), 2011 IEEE 11th international conference. New Jersey: IEEE; 2011. p. 378–87.

	Real-time topic-aware influence maximization using preprocessing
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Preliminaries
	Independent cascade model
	Influence maximization
	Topic-aware independent cascade model and topic-aware influence maximization

	Data observation
	Data description
	Topic separation on edges and nodes
	Sources of seeds in the mixture

	Preprocessing based algorithms
	Best topic selection (BTS) algorithm
	Preprocess stage
	Online stage

	Marginal influence sort (MIS) algorithm
	Preprocess stage
	Online stage

	Experiments
	Algorithms for comparison
	Experiment setup
	Experiment results

	Related work
	Future work
	Authors’ contributions
	References

