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Abstract

Knowledge graphs (KGs), which could provide essential rela-
tional information between entities, have been widely utilized
in various knowledge-driven applications. Since the overall
human knowledge is innumerable that still grows explosively
and changes frequently, knowledge construction and update
inevitably involve automatic mechanisms with less human su-
pervision, which usually bring in plenty of noises and con-
flicts to KGs. However, most conventional knowledge rep-
resentation learning methods assume that all triple facts in
existing KGs share the same significance without any nois-
es. To address this problem, we propose a novel confidence-
aware knowledge representation learning framework (CK-
RL), which detects possible noises in KGs while learning
knowledge representations with confidence simultaneously.
Specifically, we introduce the triple confidence to conven-
tional translation-based methods for knowledge representa-
tion learning. To make triple confidence more flexible and
universal, we only utilize the internal structural information
in KGs, and propose three kinds of triple confidences consid-
ering both local and global structural information. In experi-
ments, We evaluate our models on knowledge graph noise de-
tection, knowledge graph completion and triple classification.
Experimental results demonstrate that our confidence-aware
models achieve significant and consistent improvements on
all tasks, which confirms the capability of CKRL modeling
confidence with structural information in both KG noise de-
tection and knowledge representation learning.

Introduction
Recent years have witnessed the great thrive in artificial in-
telligence that has broad impacts on our daily lives. In tasks
like information retrieval and question answering, people are
not satisfied with merely semantic matching, but expect AI
agents to have knowledge for understanding, reasoning and
solving. Knowledge graphs (KGs), which provide effective
well-structured relational information between entities, are
essential supporters for knowledge-based AI agents. A typ-
ical KG usually stores knowledge with triple facts in the
form of (head entity, relation, tail entity), which is al-
so abridged as (h, r, t).
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There are existing amounts of widely-utilized large-scale
knowledge graphs such as Freebase (Bollacker et al. 2008),
DBpedia (Auer et al. 2007) and other domain-specific KGs.
However, these knowledge graphs are still far from com-
plete to describe the infinite real-world facts, in which some
kinds of knowledge may even change frequently. Therefore,
knowledge construction and timely update are significant for
knowledge-driven applications. Most conventional knowl-
edge graph construction methods usually involve huge hu-
man supervision or expert annotation, which are extremely
labor-intensive and time-consuming. Nowadays, automatic
mechanism and crowdsourcing take larger parts in knowl-
edge construction, while these methods may suffer from
possible noises and conflicts due to limited human super-
vision. For instance, recent neural relation extraction mod-
el on benchmark achieves only around 60% precision when
the recall is 20% (Lin et al. 2016). Moreover, (Heindorf et
al. 2016) focuses on vandalism detection in Wikidata, which
also verifies the existence and problems of noises in KGs.

In this paper, we concentrate on how to deal with noises in
knowledge representation learning (KRL), which provides
an effective and flexible way for using knowledge. KRL rep-
resents entities and relations with distributed representations
mainly according to triple facts in KGs. Therefore, it is cru-
cial to consider noises in knowledge representation learning
and knowledge-driven tasks.
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Figure 1: Noises in KGs and confidence-aware KRL.

We attempt to detect possible noises and conflicts located
in existing knowledge graphs, while constructing noise-free
knowledge representations simultaneously. However, most
conventional KRL methods assume that all triple facts in
existing KGs are completely correct. To solve this prob-
lem, we propose a novel confidence-aware knowledge repre-



sentation learning (CKRL) framework taking possible nois-
es into consideration. The notions of confidence and trust
have been widely studied in fields such as cognitive science.
Fig. 1 demonstrates a brief illustration of our confidence-
aware KRL framework, where the knowledge graph has both
knowledge and noises extracted from heterogenous sources.
These noises are expected to be detected via our confidence-
aware model and to be ignored in knowledge representation
learning.

Specifically, CKRL follows the translation-based frame-
work proposed by (Bordes et al. 2013), and learns knowl-
edge representations with triple confidences. We propose
three triple confidences considering both local triple and
global path information, and knowledge representations are
learned to fit the global consistency under translation as-
sumption weighted by those dynamic triple confidences. To
make the triple confidence more universal and flexible, we
only consider the internal structural information in KGs,
which correspondingly makes noise detection much more
challenging due to the limited information.

In experiments, we evaluate our models on three tasks in-
cluding knowledge graph noise detection, knowledge graph
completion and triple classification. The results demonstrate
that our models achieve the best performances on all tasks,
which confirm the capability of CKRL in noise detection and
knowledge representation learning. The main contributions
of this work are concluded as follows:

• We propose a novel confidence-aware KRL framework
for knowledge graph noise detection and knowledge rep-
resentation learning simultaneously, which only uses in-
ternal structural information in KGs.

• We evaluate our CKRL models on several datasets with
different noise rates extended from a real-world dataset,
and achieve promising performances on all tasks.

• The idea of triple confidence in CKRL could be utilized
not only in knowledge representation learning, but also in
knowledge construction.

Related Work
Knowledge Graph Noise Detection
It seems to be inevitable that noises do exist in KGs, which
can strongly affect knowledge acquisition (Manago and Ko-
dratoff 1987). Moreover, a novel task named Wikidata van-
dalism, which aims to combat with deliberate destruction-
s in knowledge graphs, has attracted wide attention (Hein-
dorf et al. 2015). Therefore, noise detection is essential in
knowledge construction and knowledge application. Most
knowledge graph noise detection works happen when con-
structing knowledge graphs. For instance, YAGO2 extracts
knowledge from Wikipedia with human supervision that hu-
man judges are presented with selected facts for which they
have to assess the correctness (Hoffart et al. 2013). Wikidata
also relies on a crowd-sourced human curation software in
which contributors can reject or approve a statement (Pel-
lissier Tanon et al. 2016). DBpedia creates its mappings to
Wikipedia infoboxes via a worldwide crowd-sourcing effort
(Lehmann et al. 2015). These noise detections in large-scale

KGs are usually involved with huge human efforts, which
are extremely labor-intensive and time-consuming.

Recently, there are also lots of researches focusing on au-
tomatic KG noise detection (Nickel et al. 2016). However,
most existing methods mainly concentrate on feature selec-
tion from contents, users, items and revisions (Heindorf et al.
2016), and thus are constrained by the completeness of ex-
ternal information. There are also some efforts working on
judging importance in graphs for nodes (Gyöngyi, Garcia-
Molina, and Pedersen 2004) or for edges (De Meo et al.
2012), but few works concentrating on the confidence of
each triple. Knowledge Vault (Dong et al. 2014) proposes
a joint approach with both web content (e.g., texts, tabular
data and human annotations) and prior knowledge derived
from existing KGs to judge triple qualities, whose perfor-
mance strongly depends on the external information. In this
paper, we introduce three triple confidences to KG noise de-
tection and knowledge representation learning, which only
focus on the internal structural information in KGs.

Translation-based KRL Methods
Recent years many efforts concentrate on learning distribut-
ed representations for knowledge graphs, among which the
translation-based methods are both straightforward and ef-
fective with the state-of-the-art performances. TransE (Bor-
des et al. 2013) projects both entities and relations into a
continuous low-dimensional vector space, interpreting rela-
tions as translating operations between head and tail entities.
The translation assumption in TransE implies the equation
that h+ r ' t. The energy function is defined as follows:

E(h, r, t) = ||h+ r− t||. (1)

TransE can well balance both effectiveness and efficiency
compared to traditional methods, while the over-simplified
translation assumption constrains the performance when
dealing with complicated relations. Some enhanced KRL
methods based on TransE attempt to solve this problem with
translations on relation-specific hyperplanes (Wang et al.
2014), relation-specific entity projection (Lin et al. 2015b)
and type-specific entity projection (Xie, Liu, and Sun 2016).
Moreover, the translation assumption only focuses on the lo-
cal information in triples, which may fail to make full use of
global graph information in KGs. (Lin et al. 2015a) extends
TransE by encoding multi-step relation path information in-
to knowledge representation learning. However, most con-
ventional KRL methods assume that all triples in KG share
the same confidence, which is inappropriate especially for
those KGs constructed automatically with less human su-
pervision. To the best of our knowledge, our model is the
first embedding method to consider triple confidences of ex-
isting KGs in KRL. In this paper, we extend TransE to learn
knowledge representations from noisy KGs, and it is not dif-
ficult for other enhanced translation-based methods to utilize
our confidence-aware KRL framework.

Methodology
We first give the notations used in this paper. Given a triple
fact (h, r, t), we consider the head and tail entities h, t ∈ E
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Figure 2: Effective mechanism of local triple confidence and global path confidence.

and the relation r ∈ R, where E and R stand for the sets of
entities and relations. T represents the overall training triple
facts including possible conflicts and noises.

To detect possible noises in knowledge graphs and learn
better knowledge representations, we introduce a novel con-
cept triple confidence for each triple fact. Triple confidence
describes the correctness and significance of a triple, which
could be measured with the favor of both internal structural
information and external heterogeneous information.

Confidence-aware KRL Framework
We attempt to detect noises and learn better knowledge rep-
resentations with triple confidence taken into consideration,
concentrating more on those triples with high confidences.
Following the translation-based framework, we design our
confidence-aware KRL energy function as follows:

E(T ) =
∑

(h,r,t)∈T

E(h, r, t) · C(h, r, t). (2)

The confidence-aware energy function can be divided into t-
wo parts:E(h, r, t) = ||h+r−t|| stands for the dissimilarity
score under translation assumption, which is the same as that
of TransE. A lowerE(h, r, t) indicates that the entity and re-
lation representations of this triple fit better with our transla-
tion framework. While differing from conventional methods,
we also introduce the triple confidence C(h, r, t) as the sec-
ond part of our energy function. A higher triple confidence
implies that the corresponding triple is more credible, and
thus should be more considered.

Triple confidence can be calculated both during and af-
ter knowledge graph construction, from various aspects in-
cluding internal information such as graphic evidence and
external information such as textual evidence. To make our
triple confidence more universal and practical, we only con-
sider the internal structural information after KG construc-
tion in our model, and propose both local and global triple
confidences which are iteratively optimized during training.
In CKRL, we bring in the confidences of different triples to
learn more about those significant triples, and thus could get
better knowledge representations.

Objective Formalization
We introduce the detailed training objective of our model
in this section. Following TransE (Bordes et al. 2013), we
formalize a margin-based score function with negative sam-
pling as objective for training. This pair-wise score function
attempts to make the scores of positive triples to be higher
than those of negative triples. We have:

L =
∑

(h,r,t)∈T

∑
(h′,r′,t′)∈T ′

max(0, γ + E(h, r, t)

−E(h′, r′, t′)) · C(h, r, t),
(3)

where E(h, r, t) is the dissimilarity score of positive triple
andE(h′, r′, t′) is that of negative triple. γ > 0 is the hyper-
parameter of margin, and T ′ represents the negative triple
set. Here the triple confidence C(h, r, t) instructs our model
to pay more attention on those more convincing facts.

For pair-wise training, since there are no explicit nega-
tive triples in knowledge graphs, we sample negative triples
complying with the following rules:

T ′ ={(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}
∪ {(h, r′, t)|r′ ∈ R}, (h, r, t) ∈ T.

(4)

It means that one entity or relation in a positive triple is ran-
domly replaced by another entity or relation in the overall
set. Note that differing from TransE, we also add relation
replacements for better performances in relation prediction.
We also discard all triples already in T from T ′ to make sure
our generated negative triples are truly negative.

Local Triple Confidence
We first come up with the local triple confidence (LT) which
only concentrates on the inside of a triple. Since our CKRL
framework follows the translation assumption that h+r ' t,
it is straightforward to directly utilize this dissimilarity func-
tion to judge triple confidences. Moreover, the promising
results of conventional translation-based methods on triple
classification also confirm that positive triples should com-
ply with the translation assumption well. Fig. 2(a) demon-
strates the effective mechanism of local triple confidence.



Since knowledge representations learned under our transla-
tion framework should follow the global consistency with all
triples in KG, we can infer that William Shakespeare is more
likely to write Hamlet rather than Pride and Prejudice, even
though there are noises in training set.

We assume that the more a triple fits the translation as-
sumption, the more convincing this triple should be con-
sidered. To measure the local triple confidence during train-
ing, we first judge the current conformity of each triple with
translation assumption. Inspired by the margin-based train-
ing strategy, we directly use the same pair-wise function to
calculate the triple quality Q(h, r, t) as follows:

Q(h, r, t) = −(γ + E(h, r, t)− E(h′, r′, t′)). (5)

A higherQ(h, r, t) usually indicates a better triple judged by
the translation assumption. At the beginning of training, we
suppose all triples are correct, and initialize the local triple
confidence LT (h, r, t) for all triples as 1. Since both enti-
ty and relation embeddings will change during training, the
current local triple confidence for each triple should be also
updated according to how much this triple fit the translation
assumption. Formally, the local triple confidence LT (h, r, t)
changes with its triple quality Q(h, r, t) as follows:

LT (h, r, t) =

{
αLT (h, r, t), Q(h, r, t) 6 0.

LT (h, r, t) + β, Q(h, r, t) > 0.
(6)

Q(h, r, t) 6 0 implies the current triple doesn’t comply with
the translation rule, and thus the corresponding local triple
confidence should decrease. On the contrary, Q(h, r, t) > 0
encourages the triple to have a larger local triple confidence.
Here, α ∈ (0, 1) and β > 0 are hyper-parameters that con-
trol the ascend or descend pace of local triple confidence,
with the assurance that LT (h, r, t) ∈ (0, 1]. Note that the lo-
cal triple confidence will decrease at a geometric rate while
increase with a constant addition. It is because that we urge
to punish the violations of translation rule, for those triples
are more likely to be noises or conflicts, and thus should
have smaller confidences.

Global Path Confidence
The local triple confidence is straightforward and effective,
while simply concentrating on the inside of triples will fail to
use rich global structural information in knowledge graphs.
Moreover, local triple confidence won’t work well with high
noise rate. Therefore, we propose the global path confidence
to take multi-step relation paths into consideration. For in-
stance, in Fig. 2(b), there are two multi-step relation paths
from William Shakespeare to Hamlet. The lower path pro-
vides strong evidence to infer the relation write, while the
upper path just provides weaker evidence. These paths could
also help us to judge triple qualities.

A triple considered to have high global path confidence
should follow two conditions: (1) it has more reliable paths
from its head to tail entity, and (2) these reasoning paths are
semantically closer to the corresponding relation. In the fol-
lowing sub-sections, we first introduce how to quantify the
relation path reliability for each triple, and then propose two
strategies using prior co-occurrence information and learned

knowledge representations to measure the semantic similar-
ity between paths and relations.

Relation Path Reliability We assume that a relation path
should be considered more important if it carries more in-
formation flow from the head to tail entity. Specifically, we
follow the path-constraint resource allocation (PCRA) (Lin
et al. 2015a) to measure the relation path reliability. The key
idea of PCRA is inspired by resource allocation (Zhou et
al. 2007), which supposes there are certain resources associ-
ated with head entity h, and will flow throughout the whole
knowledge graph via all relation paths. The resource amount
that eventually flows to the tail entity t via a certain path p
will be considered as the relation path reliability of p given
the entity pair (h, t).

Formally, given a path p = (r1, · · · , rl) and entity pair
(h, t), the resource in h will flow to t through l steps. Since
there are probably multiple tails given head and relation, the
path is represented as E0

r1−→ · · · rl−→ El, where Ei repre-
sents the entity set at the i-th step, E0 = {h} and t ∈ El.
For entity e ∈ Ei, the resource Rp(e) will be calculated as
follows:

Rp(e) =
∑

e′∈Ei−1(·,e)

Rp(e
′)

|Ei(e′, ·)|
, (7)

in which Ei−1(·, e) represents the direct predecessors of e
via ri, and Ei(e

′, ·) represents the direct successors of e′ vi-
a ri. All entities will be initialized with the same resource
amount, and finally after l steps from h to t, the resource
amount Rp(t) is regarded as the relation path reliability
R(h, p, t) of p with the given entity pair (h, t).

Prior Path Confidence We first introduce prior path con-
fidence (PP), which utilize the co-occurrence of relation and
path to represent their dissimilarity. We suppose that the
more a relation occurs with a path, the more they are like-
ly to represent similar semantic meanings. Formally, given a
triple (h, r, t) and its path set S(h,t) containing all paths be-
tween h and t, the quality of the i-th relation-path pair (r, pi)
is written as follows:

QPP (r, pi) = ε+ (1− ε)P (r, pi)
P (pi)

, (8)

where P (r, pi) represents the prior probability of r and pi
co-occurrence, and P (pi) represents the prior probability of
pi in KG. ε is a hyper-parameter for smoothing. Therefore,
the prior path confidence (PP) is designed as follows:

PP (h, r, t) =
∑

pi∈S(h,t)

QPP (r, pi) ·R(h, pi, t). (9)

It indicates that the prior path confidence of (h, r, t) depend-
s on both relation-path similarities of all paths in S(h,t) and
their corresponding relation path reliabilities. Note that s-
ince we merely consider the prior probabilities of paths and
relations, prior path confidences are fixed during training.

Adaptive Path Confidence The prior path confidence s-
tays static during training, which is inflexible and may be
strongly constrained by existing noises and conflicts in KGs.



To address this problem, we propose the adaptive path con-
fidence (AP) that could flexibly learn relation-path quali-
ties according to their learned embeddings. Formally, giv-
en r and pi = {ri1, · · · , rik}, we directly represent the
path embedding pi with the sum of its relation embeddings
ri1+· · ·+rik under the translation assumption. The relation-
path quality function of AP is defined as follows:

QAP (r, pi) = ||r− pi|| = ||r− (ri1 + · · ·+ rik)||. (10)

Since we assume that the relation embedding should be sim-
ilar as the path embedding, a lower QAP (r, pi) implies a
more convincing relation-path pair. The adaptive path confi-
dence is then written as follows:

AP (h, r, t) = σ(
∑

pi∈S(h,t)

R(h, pi, t)

QAP (r, pi)
), (11)

in which σ(·) stands for the sigmoid function. Adaptive path
confidence can describe triple confidences dynamically with
evolutionary relation embeddings during training, making
our triple confidences more flexible and precise.

The overall triple confidence combines with all three
kinds of confidences stated above. We have:

C(h, r, t) = λ1 · LT (h, r, t) + λ2 · PP (h, r, t)
+ λ3 ·AP (h, r, t),

(12)

where λ1, λ2, λ3 are hyper-parameters.

Optimization and Implementation Details
We utilize mini-batch stochastic gradient descent (SGD) to
optimize our model. In training, all entity and relation em-
beddings could be either initialized randomly or pre-trained
with TransE. For those entity pairs that don’t have paths, we
directly set their path-based confidences as 0.

Path selection is essential in our model that will have sig-
nificant impacts on the performances. Since the number of
all paths grows exponentially with the increase of maximum
path length, it is impractical to enumerate all paths in KG.
Moreover, the path-based inference will be much weaker
when the logical chain goes too far. Considering both ef-
fectiveness and efficiency, we limit the maximum length of
paths to at most 2-steps to prevent possible error propaga-
tion. Since relations in KGs are directed edges, we also con-
sider those reverse relations when we detect relation paths.

Experiment
Datasets
In this paper, we evaluate our CKRL model based on FB15K
(Bordes et al. 2013), which is a typical benchmark knowl-
edge graph extracted from Freebase (Bollacker et al. 2008).
However, there are no explicit labelled noises or conflicts
in FB15K. Therefore, we generate new datasets with differ-
ent noise rates based on FB15K to simulate the real-world
knowledge graphs constructed automatically with less hu-
man annotation.

Most noises and conflicts in real-world knowledge graphs
derive from the misunderstanding between similar entities.
It indicates that the noise (Jane Austen, write, Hamlet) is

more likely to occur in real-world KG rather than (Soccer,
write, Hamlet), in which the latter could be easily detect-
ed via entity type constraints. Inspired by the preprocessing
in the evaluation task named triple classification, we con-
struct negative triples (i.e., noises) following the same set-
ting in (Socher et al. 2013). Specifically, given a positive
triple (h, r, t) in KG, we randomly switch one of head or tail
entities to form a negative triple (h′, r, t) or (h, r, t′). The
generation of negative triples is constrained that h′ (or t′)
should have appeared in the head (or tail) position with the
same relation r in dataset, which means that the head entity
of relation write in negative triples should also be a writ-
er. This constraint focuses on generating harder and more
confusing cases, for those negative triples with mistype en-
tities could be easily detected. We can directly utilize enti-
ty type information in Freebase or follow the local closed-
world assumption (Krompaß, Baier, and Tresp 2015) to col-
lect type constraint information. Following this protocol, we
construct three KGs based on FB15K with negative triples to
be 10%, 20% and 40% of positive triples, and then discard a
small number of negative triples that violate type constraints.
All three noisy datasets share the same entities, relations,
validation and test sets with FB15K, with all generated neg-
ative triples fused into the original training set of FB15K.
The statistics are listed in Table 1.

Table 1: Statistics of datasets
Dataset #Rel #Ent #Train #Valid #Test

FB15K 1,345 14,951 483,142 50,000 59,071

Datasets FB15K-N1 FB15K-N2 FB15K-N3

#Neg triple 46,408 93,782 187,925

Experimental Settings
In experiments, we evaluate our CKRL models with three d-
ifferent confidence combination strategies. CKRL (LT) rep-
resents the strategy which only considers local triple con-
fidence, CKRL (LT+PP) considers both local triple confi-
dence and prior path confidence, while CKRL (LT+PP+AP)
considers all three kinds of triple confidences. We imple-
ment TransE (Bordes et al. 2013) as baseline for the CKRL
learning framework is based on TransE, and it is not difficult
for our confidence-aware framework to be utilized in other
enhanced translation-based methods.

We train our CKRL model using mini-batch SGD with
the margin γ empirically set as 1.0. We select the over-
all learning rate δ among {0.0005, 0.001, 0.002}, which is
fixed during training. For local triple confidence, we select
the descend controller α among {0.5, 0.7, 0.9} and the as-
cend controller β among {0.0001, 0.0005, 0.001}. For prior
path confidence, the smoothing ε is empirically set as 0.01.
The optimal configurations of our models are: δ = 0.001,
α = 0.9, β = 0.0001, which are optimized on the valida-
tion set. We also evaluate various combination weights λi
when we calculate the overall triple confidence based on the
three proposed methods. We select a unified weighting s-
trategy for different evaluation tasks and datasets according
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Figure 3: Evaluation results on knowledge graph noise detection.

to their overall performances to show the robustness of our
CKRL models. Specifically, for CKRL (LT+PP), we select
λ1 = 0.9 and λ2 = 0.1, while for CKRL (LT+PP+AP), we
select λ1 = 1.5, λ2 = 0.1 and λ2 = 0.4. For fair compar-
isons, the dimensions of both entity and relation embeddings
in all models are equally set to be 50.

Knowledge Graph Noise Detection
To verify the capability of our CKRL models in distinguish-
ing noises and conflicts in knowledge graphs, we propose a
novel evaluation task named knowledge graph noise detec-
tion. This task aims to detect possible noises in knowledge
graphs according to their triple scores.

Evaluation Protocol Inspired by the evaluation metric of
triple classification in (Socher et al. 2013), we consider the
energy function scores E(h, r, t) = ||h + r − t|| as our
triple scores, and then rank all triples in training set accord-
ing to these scores. Those triples with higher scores are first
considered to be noises. We utilize precision/recall curves to
demonstrate the performances.

Experimental Results Fig. 3 demonstrates the results of
knowledge graph noise detection, from which we can ob-
serve that: (1) our confidence-aware KRL models achieve
the best performances on all three datasets with different
noise proportions. It confirms the capability of our CKRL
models in modeling triple confidence and detecting noises
and conflicts in knowledge graphs. (2) CKRL (LT+PP+AP)
has significant and consistent improvements in noise detec-
tion compared to other confidence-aware strategies. It indi-
cates that the adaptive path confidence could provide more
flexible and credible evidence for noise detection. Moreover,
CKRL (LT+PP+AP) achieves impressively 84 ∼ 94% in
precision with different noise proportions when the recal-
l is 10%, which implies that our models could truly help in
real-world KG noise detection. (3) CKRL (LT+PP) perform-
s better than CKRL (LT) especially at the beginning of PR
curves, which matters more in real-world KG noise detec-
tion systems. It implies that even though the local triple con-
fidence is capable of capturing KG global consistency via
learned knowledge representations, the global path informa-
tion could still be a qualified supplement via multi-step path

reasoning. (4) For further comparisons, we also evaluate P-
TransE (Lin et al. 2015a) which considers multi-step paths
in KRL on this task with its energy function, while the re-
sults are surprisingly much worse than TransE. We find that
PTransE can not detect noises in KGs well, for its path-based
energy function scores only work when comparing positive
and negative pairs. We don’t show the results of PTransE
due to the limited space.

Knowledge Graph Completion
Knowledge graph completion is a classical evaluation task
that concentrates on the quality of knowledge representa-
tions (Bordes et al. 2012). This task aims to complete a triple
when one of head, tail or relation is missing, which can be
viewed as a simple question answering task.

Evaluation Protocol In this paper, we mainly focus on en-
tity prediction, which is determined by the translation as-
sumption that h + r ' t. Following the same settings in
(Bordes et al. 2013), we conduct two measures as our evalu-
ation metrics: (1) Mean Rank of correct entities, and (2) Hit-
s@10 that indicates the proportion of correct answers ranked
in top 10. We also follow the different evaluation settings of
“Raw” and “Filter” utilized in (Bordes et al. 2013).

Experimental Results In Table 2 we demonstrate the re-
sults of entity prediction with different noise rates, from
which we can observe that: (1) all confidence-aware KR-
L models consistently and significantly outperform baseline
on all noisy datasets with all evaluation metrics. It confirm-
s the quality of learned knowledge representations, for they
could not only detect noises in knowledge graphs, but al-
so perform well in knowledge graph completion. (2) Com-
paring with evaluation results between different datasets, we
find that the improvements introduced by our confidence-
aware methods become more significant as the noise rate in
KGs goes higher. It indicates that noises are harmful to en-
tity prediction, and on the other hand reaffirms that consid-
ering triple confidence in knowledge representation learning
is essential. (3) It seems that the global path confidence has
few contributions on entity prediction. It may be partially
caused by the uncertainty and incompleteness in path infor-
mation due to possible error propagation and limited path s-



Table 2: Evaluation results on entity prediction
Datasets FB15K-N1 FB15K-N2 FB15K-N3

Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 240 144 44.9 59.8 250 155 42.8 56.3 265 171 40.2 51.8

CKRL (LT) 237 140 45.5 61.8 243 146 44.3 59.5 244 148 42.7 56.9
CKRL (LT+PP) 236 139 45.3 61.6 241 144 44.2 59.4 245 149 42.8 56.8

CKRL (LT+PP+AP) 236 138 45.3 61.6 240 144 44.2 59.3 245 150 42.8 56.6

election. In parameter analysis, we find that a higher weight
of global path confidence within a reasonable range will im-
prove the performances of entity prediction while harming
those of KG noise detection. Taking longer relation paths in-
to consideration with prior knowledge or patterns to assure
high path qualities will partially solve this problem. (4) For a
more comprehensive comparison, we evaluate TransE on the
original FB15K dataset (without any noises) with the same
parameter settings, evaluation protocols and test set. The re-
sult of Hits@10 (Filter) is 64.7% and Mean Rank (Filter) is
134, which can be viewed as the upper bound of our mod-
els. Compared to these results, the improvements of CKRL
seem to be good as well.

Triple Classification

Triple classification aims to predict whether a triple in test
set is correct or not according to the dissimilarity function,
which could be viewed as a binary classification task. Triple
classification could also be regarded as a simpler knowl-
edge graph noise detection task in test set, for the noises
in training set will influence the construction of knowledge
representations, while the negative triples generated in test
set will not.

Evaluation Protocol Since there are no explicit negative
triples in existing knowledge graphs, we construct negative
triples in validation and test set following the same proto-
col in (Socher et al. 2013). We also assure that the number
of generated negative triples should be equal to that of pos-
itive triples. The classification is conducted as follows: we
first learn different thresholds δr for each relation, which
are optimized by maximizing the classification accuracies
on validation set. In classification, if the energy function
||h + r − t|| < δr, the triple will be classified to be pos-
itive, and otherwise to be negative.

Table 3: Evaluation results on triple classification
Datasets FB15K-

N1
FB15K-

N2
FB15K-

N3

TransE 81.3 79.4 76.9

CKRL (LT) 81.8 80.2 78.3
CKRL (LT+PP) 81.9 80.1 78.4

CKRL (LT+PP+AP) 81.7 80.2 78.3

Experimental Results Table 3 demonstrates the results of
triple classification. We can find that: (1) The CKRL mod-
els outperform baseline on all datasets, and the improve-
ments become more significant with higher noise rates. It
confirms that learning knowledge representations with triple
confidence could also help for triple classification. (2) The
advantages confidence-aware models have over baseline in
this task seem to be smaller than those in KG noise detec-
tion. It is because that the CKRL models concentrate more
on calculating confidences for triples in training set, but not
for negative triples generated in test set. The possible im-
provements for CKRL in triple classification can only de-
rive from better-learned knowledge representations, which
are less straightforward compared to that in KG noise detec-
tion. Although CKRL models learn better knowledge rep-
resentations, conventional models without confidence may
also achieve comparable results.

Conclusion and Future Work
In this paper, we propose a novel CKRL model which aims
to detect noises in knowledge graphs and learn robust knowl-
edge representations simultaneously. To make our models
more flexible and universal, we only consider the internal
structural information in KGs to define the local triple confi-
dence and the global path confidence. We evaluate our mod-
els on KG noise detection, KG completion and triple classi-
fication. Experimental results indicate that CKRL can well
capture both local and global structural information to mea-
sure triple confidences, which is essential when detecting
noises in KGs and learning better knowledge representation-
s. The utilization of triple confidence could also inspire the
noise detection in real-world knowledge construction. The
source code and dataset of this paper can be obtained from
https://github.com/thunlp/CKRL.

We will explore the following research directions in fu-
ture: (1) external information such as entity attributes and
entity descriptions could provide supplementary information
to judge triple confidence. We will explore to combine exter-
nal heterogeneous information with internal structural infor-
mation to better understand entities and relations. (2) We ob-
serve that the experimental results on knowledge graph noise
detection are promising even with high noise rate datasets.
In future, we will extend our confidence-aware framework
to noise detection in knowledge construction, which could
protect knowledge graphs away from noises and conflicts
via global structural information in KGs.
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