Log-linear Models for Word Alignment

Yang Liu, Qun Liu and Shouxun Lin

Institute of Computing Technology
Chinese Academy of Sciences

Categories of Alignment
Approaches

« Statistical approaches
— based on well-founded probabilistic models

— depend on unknown parameters that are
learned from training data

* Heuristic approaches

— use various similarity functions between the
types of two languages

Previous Work

« Combination of association clues
(Tiedemann, 2003)

* Model 6, a log-linear combination of IBM
Model 4 and HMM model (Och and Ney,
2003)

« A probability model, allowing easy
Integration of context-specific features
(Cherry and Lin, 2003)

Log-linear models

i & ()
expia ! wmhn (X, y)g
Pr(xly)= ——5 0
a expja Imhm(x',y)g
X m=1

Log-linear models, which are very suitable to incorporate additional

dependencies, have been successfully applied to statistical machine
translation (Och and Ney, 2002).

Log-linear Models for Word

Alignment
| & Ul
expia | nh, (aef)g
Pr(ale,f)= oL
Q expi a | .h, (aef)g
a' | m=1

Log-linear models ARE statistical models.

Three Problems

 Feature selection

— Which knowledge sources are useful and how
to design feature functions to make use of
them?

* Training
— How to estimate the model scaling factors?

 Search

— How to search the optimal alignment in an
effective and efficient way?

Feature selection

 |IBM translation model 3

hia.e. f) = Pr(f{.ai|e])

i
T — 4o m—2¢a___ dno ("
- ()‘“D “p1™" | | diln(piles) =

Ly

]‘[r[fla]fm m)

* POS tags transition model
hia.ef, eT fT) —Hrf’

I,i'l|

 Bilingual dictionary coverage

hia,e.f,D) = Z occur (€q()s fo(s)s D)
il

Training

 We use YASMET, which implement GIS algorithm, to
train model scaling factors.

 We select the model parameters that yield best
alignments on the development corpus

« POS tags transition probabilities are also estimated on
development corpus

Na(fT,eT')

P(TIeT) = =5y

Here, N4(f1,el) 15 the frequency that the POS tag
fT 1s aligned to POS tag eI and N (eT') 1s the fre-
quency of €1" in the development corpus.

Search

start state

termin'al state

intermediate state

We use a greedy search algorithm
to search the alignment with highest
probability in the space of all
possible alignments. A state in this
space is a partial alignment. A
transition is defined as the addition
of a single link to the current state. A
start state is the empty alignment. A
terminal state is a state in which no
more links can be added to increase
the probability of current state.

An Example

R A

o O O O O

o O O O

| am a student

o O O O

| am a student

An Example

R Ak
iOOOO
o O O

| am a student

o2 — 4 A

O O O O O

/

o O O O

| am a student

20 possible links!

An Example

R Ak

© 0 0 O
4
/0 0o 0o o

| am a student

20 possible links!
o O O O

The partial
alignment with
the greatest
O O O O O probability

OOOO/ e

| am a student

| am a student

o2 — 4 A

An Example

"R A
EOO O/O
O O O
| am a student
*OR A ¥E ROR A %A
O O O O O O O O O O '
|
O O O O O 0 O O . 19 possible links!
| am a student | am a student
"R A
OOO/O/O
O O O O

| am a student

An Example

oo Ak
O O O/O
O O O
am a student
*oR o A ¥E &R A%
O O O O O O O O O O '
|
O O O O O 0 O O . 19 possible links!
| am a student | am a student
Lo 0 0 O
v /
O O O O

| am a student

& & — 4 FE
O 0 0O O ©
O 0 O O

| am a student

An Example

o2 — 4 FE

o 0 O O O
VA P

o O O O

am a student

am a student

An Example

Start state Intermediate state terminal state
2 — 4~ FE K E — N EAE 33/:;'%—/\“4
O O O O O o O O O O

-> VA O
O O O O o O O O
| am a student | am a student am a student

No links can be added to
increase the probability of
terminal state!

We compute gain, which is a heuristic function, instead of
probability for efficiency.

Search Algorithm

Input: e, f el I, and D

Output: a

1. Start with a = o.

2. Doforeach! = (i,j) and ! & a:
Compute gain(a,l)

3. Ternunate if 71, gain(a,l) < 1.

4. Add the link [with the maximal gain(a.l)
to a.

5. Goto 2.

Greedy Vs. Hill climbing

Greedy Hill climbing
Operators Add (a special Move
case of Move) Swap
Initial alignment empty Viterbi
alignment alignment of a
simple model
Applicability log-linear fertility-based
models models
Algorithm type greedy greedy

Problems with the Search
Algorithm

ha.e. f) = Pr*uj:ff_”fh-{)

{
'il'r'l _ {r"l[:l —_ i i f b
— () P 200, ¥ H biln(dilei) x

Wy 1

H i“[f_',-|r-l_,lj]t.!r[_,l'|u__,-. [.m)

=1

However, the search algorithm, which is general enough for any log-
linear models, is not efficient for our models. It is time-consuming
for each feature to figure out a probability when adding a new link,
especially when the sentences are very long.

New Gain

_ ¥ &h, (aEl,ef)0
gain(a,l)=ag | ., log =
@1)=a11199¢7 ael) 3
We restrict that h (aef)3 0 for all feature functions. Note that we
still call the new heuristic function gain to reduce notational
overhead. As a result, the termination condition will change to:

é"l o aa1m(aEI,e,f)t_')£t
L @el)

Y

g 1
t=al.ilog

I
m=1]‘

an,(aklef)s §
g h (ael) E—@m(aEl,e,f)-hn(a,e,f)%

We call t the gain threshold. It depends on the added link. But we
remove this dependency for simplicity when using it in search
algorithm by treating it as a fixed real-valued number.

Why we develop a new Gain?

In the old gain, every feature has to figure out a probability; in
the new gain, many terms will be cancelled out. For example,
If a new link I=(i, j) is added, for IBM model 3 alone the new

gain will only compute:

po, Po - 1:ol(m'fo'|'1) '(f.+1)'
P, (m-2f,+1)" (m- 2f, +2) |
. | t{f. |e

0 rrie). (nie)

n(file) t(f le)

The reason why we develop a new way to compute gain is that we
try to reduce the computation.

New Search Algorithm

Input: e, f.eT.fI. Dand?

Output: a

1. Start with a = .
2. Do foreach! = (i.7) and | £ a:

Compute gain(a,l)

3. Termunate if 71, gain(a,[) < t.

4. Add the link [with the maximal gain(a.l)
to a.

5. Goto 2.

How to get a n-best list?

« As shown above, we use a greedy search
algorithm to search the optimal alignment. When
we use GIS algorithm to train model scaling
parameters, we need a n-best list. Therefore, we
use a breadth-first search algorithm with pruning.
During the search, every link will be added to

every alignment in the n-best list and then
update the n-best list.

« During the search, states those are indistinguish
will be recombined

An illustration

A |7
(//O O\O O Start state
/\ /I\ O Intermediate state
/ © © O Terminal state
I\O\ O Discarded state

ANAN
S
77

Experimental Results

Chinese English

Train Sentences 108 925

Words 3784 106 | 3 862 637

Vocabulary 490 962 55 698
Dict Entries 415 753

Vocabulary 206 616 203 497
Dev Sentences 435

Words 11 462 14 252

Ave. SentLen 260.35 32.76
Test Sentences 500

Words 13 891 15 201

Ave. SentLen 27.78 30.58

Statistics of training corpus (Train), bilingual dictionary (Dict),
development corpus (Dev) and test corpus (Test)

Experimental Results (cont.)

Size of Traiming Corpus

1K SK oK 39K 109K
Model 3E— C 0.4497 | 0.4081 | 0.4009 | 0.3791 | 0.3745
Model 3C— E 0.4688 | 0.4261 | 0.4221 | 0.3856 | 0.3469
Intersection 0.4588 | 0.4106 | 0.4044 | 0.3823 | 0.3687
Union 0.4596 | 0.4210 | 0.4157 | 0.3824 | 0.3703
Refined Method | 0.4154 | 0.3586 | 0.3499 | 0.3153 | 0.3068
Model 3E— C 0.4490 | 0.3987 | 0.3534 | 0.3639 | 0.3533
+Model 3C — E | 0.3970 | 0.3317 | 0.3217 | 0.2949 | 0.2850
+POSE—C 0.3828 | 0.3182 | 0.3082 | 0.2838 | 0.2739
+POSC — E 0.3795 | 0.3160 | 0.3032 | 0.2821 | 0.2726
+ Dict 0.3650 | 0.3092 | 0.2982 2738 | 0.2685

Comparison of AER for results of using IBM Model 3 (GIZA++) and

log-linear models

Experimental Results (cont.)

Size of Tramning Corpus
1K SK OK 30K 109K
Model 5SE— C 0.4384 | 0.3934 | 0.3853 | 0.3573 | 0.3429
Model 5C— E 0.4564 | 0.4067 | 0.3900 | 0.3423 | 0.3239
Intersection 0.4432 | 0.3916 | 0.3798 | 0.340606 | 0.3267
Union 0.4499 | 0.4051 | 0.3923 | 0.3516 | 0.3375
Refined Method | 0.4106 | 0.3446 | 0.3262 | 0.2878 | 0.2748
Model 3E— C 0.4372 | 0.3873 | 0.3724 | 0.3456 | 0.3334
+Model 3C — E | 0.3920 | 0.3269 | 0.3167 | 0.2842 | 0.2727

+POSE — C 0.3807 | 0.3122 | 0.3039 | 0.2732 | 0.2667
+POSC — E 0.3731 | 0.3091 | 0.3017 | 0.2722 | 0.2657
+ Dict 0.3612 | 0.3046 | 0.2943 | 0.2658 | 0.2625

Comparison of AER for results of using IBM Model 5 (GIZA++) and
log-linear models

Experimental Results (cont.)

—u— jntersection
1 —a— union
Lo —a— refined method
0 dd —w»— log-linear combination
0.42 -
i _‘_‘_‘_‘_‘_|—|_
0.40 .
0.38 |
E ' (]
= 0.36 -
0.34 -
0.32 - T
0.28
I ' I ' 1 ' I ' I
1k sk Ok 30k 109k

size of training corpus

Comparison on AER for various symmetrization methods: intersection,
union, refined method and log-linear combination (i.e. M3 C->E + M3 E->C)

Experimental Results (cont.)

—m— EEC
—— MEEC + MICE

-l RESEC + RMICE + POSEC
1200 —w— MEEC + MICE « POSEC + POSCE

= —#— FEEC + MICE + POSEC + POSCE + Dicl
& 1000

(=3

B

= &

)

A

3

= 5]

=

2

?:- o] —

=

200 T L T L T

T I T
1k Sk B J9k 105k

size ol Iraining corpus

Effect of number of features and size of training corpus on search
efficiency

Experimental Results (cont.)

MEC | +MCE | +PEC | +PCE | +Dact
Ay | 1.000 | 0.466 | 0.291 | 0.202 | 0.151
A2 - 0.534 | 0.312 | 0.212 | 0.167
A3 - - 0.397 | 0.270 257
A4 - - - 0.316 | 0.306
As - - - - 0.119

Resulting model scaling factors

Experimental Results (cont.)

—0O— Precision

—o— Heaecall
—d— SaEH
1.0 .
o
o
co—oga-o=f o
05 4 o—a—
0.4 <
02 —
0.0 —
1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1
-10 -B -G -4 -2 a 2 4 E B 10

gamn thrashald

Precision, recall and AER over different gain thresholds
with the same model scaling factors

Future Work

Exploit more knowledge sources ranging
from syntax-based models to various
linguistic resources

Optimize the model parameters directly
with respect to AER

Improve the efficiency of search algorithm
Try on other language pairs

Thanks!

