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Categories of Alignment 
Approaches

• Statistical approaches 
– based on well-founded probabilistic models
– depend on unknown parameters that are 

learned from training data
• Heuristic approaches 

– use various similarity functions between the 
types of two languages



Previous Work

• Combination of association clues 
(Tiedemann, 2003)

• Model 6, a log-linear combination of IBM 
Model 4 and HMM model (Och and Ney, 
2003)

• A probability model, allowing easy 
integration of context-specific features 
(Cherry and Lin, 2003) 



Log-linear models
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Log-linear models, which are very suitable to incorporate additional
dependencies, have been successfully applied to statistical machine 
translation (Och and Ney, 2002).



Log-linear Models for Word 
Alignment
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Log-linear models ARE statistical models.



Three Problems

• Feature selection
– Which knowledge sources are useful and how 

to design feature functions to make use of 
them? 

• Training
– How to estimate the model scaling factors?

• Search
– How to search the optimal alignment in an 

effective and efficient way?



Feature selection

• IBM translation model 3

• POS tags transition model

• Bilingual dictionary coverage



Training
• We use YASMET, which implement GIS algorithm, to 

train model scaling factors.
• We select the model parameters that yield best 

alignments on the development corpus
• POS tags transition probabilities are also estimated on 

development corpus



Search
start state

terminal state

intermediate state

We use a greedy search algorithm 
to search the alignment with highest 
probability in the space of all 
possible alignments. A state in this 
space is a partial alignment. A 
transition is defined as the addition 
of a single link to the current state. A 
start state is the empty alignment. A 
terminal state is a state in which no 
more links can be added to increase 
the probability of current state. 



An Example

是 一 个 学生

I am a student

我
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An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

…

Start state Intermediate state terminal state

No links can be added to 
increase the probability of 
terminal state!



Gain
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We compute gain, which is a heuristic function, instead of 
probability for efficiency.



Search Algorithm



Greedy Vs. Hill climbing

greedygreedyAlgorithm type

fertility-based 
models

log-linear 
models

Applicability

Viterbi 
alignment of a 
simple model

empty 
alignment

Initial alignment

Move
Swap

Add (a special 
case of Move)

Operators

Hill climbingGreedy



Problems with the Search 
Algorithm

However, the search algorithm, which is general enough for any log-
linear models,  is not efficient for our models. It is time-consuming 
for each feature to figure out a probability when adding a new link, 
especially when the sentences are very long.



New Gain 
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We restrict that                        for all feature functions. Note that we 
still call the new heuristic function gain to reduce notational 
overhead. As a result, the termination condition will change to:

We call t the gain threshold. It depends on the added link. But we 
remove this dependency for simplicity when using it in search 
algorithm by treating it as a fixed real-valued number.
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Why we develop a new Gain?
• In the old gain, every feature has to figure out a probability; in 

the new gain, many terms will be cancelled out. For example, 
if a new link l=(i, j) is added, for IBM model 3 alone the new 
gain will only compute:
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The reason why we develop a new way to compute gain is that we 
try to reduce the computation. 



New Search Algorithm



How to get a n-best list?

• As shown above, we use a greedy search 
algorithm to search the optimal alignment. When 
we use GIS algorithm to train model scaling 
parameters, we need a n-best list. Therefore, we 
use a breadth-first search algorithm with pruning. 
During the search, every link will be added to 
every alignment in the n-best list and then 
update the n-best list. 

• During the search, states those are indistinguish 
will be recombined 



An illustration
N=2

Start state

Intermediate state

Terminal state

Discarded state



Experimental Results

Statistics of training corpus (Train), bilingual dictionary (Dict), 
development corpus (Dev) and test corpus (Test)



Experimental Results (cont.)

Comparison of AER for results of using IBM Model 3 (GIZA++) and 
log-linear models



Experimental Results (cont.)

Comparison of AER for results of using IBM Model 5 (GIZA++) and 
log-linear models



Experimental Results (cont.)

Comparison on AER for various symmetrization methods: intersection, 
union, refined method and log-linear combination (i.e. M3 C->E + M3 E->C)



Experimental Results (cont.)

Effect of number of features and size of training corpus on search 
efficiency



Experimental Results (cont.)

Resulting model scaling factors



Experimental Results (cont.)

Precision, recall and AER over different gain thresholds 
with the same model scaling factors



Future Work

• Exploit more knowledge sources ranging 
from syntax-based models to various 
linguistic resources

• Optimize the model parameters directly 
with respect to AER

• Improve the efficiency of search algorithm
• Try on other language pairs



Thanks!


