
Log-linear Models for Word Alignment

Yang Liu, Qun Liu and Shouxun Lin

Institute of Computing Technology
Chinese Academy of Sciences

Categories of Alignment
Approaches

• Statistical approaches
– based on well-founded probabilistic models
– depend on unknown parameters that are

learned from training data
• Heuristic approaches

– use various similarity functions between the
types of two languages

Previous Work

• Combination of association clues
(Tiedemann, 2003)

• Model 6, a log-linear combination of IBM
Model 4 and HMM model (Och and Ney,
2003)

• A probability model, allowing easy
integration of context-specific features
(Cherry and Lin, 2003)

Log-linear models

()
()

()
1

' 1

e x p ,
P r |

e x p ',

M

m m
m

M

m m
x m

h x y
x y

h x y

λ

λ

=

=

 =

∑

∑ ∑

Log-linear models, which are very suitable to incorporate additional
dependencies, have been successfully applied to statistical machine
translation (Och and Ney, 2002).

Log-linear Models for Word
Alignment

()
()

()
1

a ' 1

e x p a ,e , f
P r a |e , f

e x p a ',e , f

M

m m
m

M

m m
m

h

h

λ

λ

=

=

 =

∑

∑ ∑

Log-linear models ARE statistical models.

Three Problems

• Feature selection
– Which knowledge sources are useful and how

to design feature functions to make use of
them?

• Training
– How to estimate the model scaling factors?

• Search
– How to search the optimal alignment in an

effective and efficient way?

Feature selection

• IBM translation model 3

• POS tags transition model

• Bilingual dictionary coverage

Training
• We use YASMET, which implement GIS algorithm, to

train model scaling factors.
• We select the model parameters that yield best

alignments on the development corpus
• POS tags transition probabilities are also estimated on

development corpus

Search
start state

terminal state

intermediate state

We use a greedy search algorithm
to search the alignment with highest
probability in the space of all
possible alignments. A state in this
space is a partial alignment. A
transition is defined as the addition
of a single link to the current state. A
start state is the empty alignment. A
terminal state is a state in which no
more links can be added to increase
the probability of current state.

An Example

是 一 个 学生

I am a student

我

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

.

.

.

.

20 possible links!

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

.

.

.

.

20 possible links!

The partial
alignment with
the greatest
probability

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

.

.

.

.

我 是 一 个 学生

I am a student

19 possible links!

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

.

.

.

.

我 是 一 个 学生

I am a student

19 possible links!

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

…

An Example

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

我 是 一 个 学生

I am a student

…

Start state Intermediate state terminal state

No links can be added to
increase the probability of
terminal state!

Gain

()
()

()
1

1

exp a , e, f
a ,

exp a , e, f

M

m m
m

M

m m
m

h l
ga in l

h

λ

λ

=

=

∪

 =

∑

∑

We compute gain, which is a heuristic function, instead of
probability for efficiency.

Search Algorithm

Greedy Vs. Hill climbing

greedygreedyAlgorithm type

fertility-based
models

log-linear
models

Applicability

Viterbi
alignment of a
simple model

empty
alignment

Initial alignment

Move
Swap

Add (a special
case of Move)

Operators

Hill climbingGreedy

Problems with the Search
Algorithm

However, the search algorithm, which is general enough for any log-
linear models, is not efficient for our models. It is time-consuming
for each feature to figure out a probability when adding a new link,
especially when the sentences are very long.

New Gain

() ()
()1

a , e, f
a , log

a,e,f

M
m

m
m m

h l
gain l

h
λ

=

 ∪
=

∑

()a,e,f 0mh ≥

()
()1

a , e, f
log

a,e,f

M
m

m
m m

h l
t

h
λ

=

 ∪
≤

∑

We restrict that for all feature functions. Note that we
still call the new heuristic function gain to reduce notational
overhead. As a result, the termination condition will change to:

We call t the gain threshold. It depends on the added link. But we
remove this dependency for simplicity when using it in search
algorithm by treating it as a fixed real-valued number.

()
() () ()

1

a ,e, f
log a ,e, f a,e, f

a,e, f

M
m

m m m
m m

h l
t h l h

h
λ

=

 ∪ = − ∪ −
∑

Why we develop a new Gain?
• In the old gain, every feature has to figure out a probability; in

the new gain, many terms will be cancelled out. For example,
if a new link l=(i, j) is added, for IBM model 3 alone the new
gain will only compute:

()
() () ()

()
()

()
() ()

0 00 0

1 0 0

0

1
1

2 1 2 2

|1 |
| , ,

| |

i

j ii i

i i j

mp p
p m m

t f en e
d j i l m

n e t f e

φ φ
φ

φ φ

φ
φ

× − +×
× × + ×

− + × − +

+
× ×

The reason why we develop a new way to compute gain is that we
try to reduce the computation.

New Search Algorithm

How to get a n-best list?

• As shown above, we use a greedy search
algorithm to search the optimal alignment. When
we use GIS algorithm to train model scaling
parameters, we need a n-best list. Therefore, we
use a breadth-first search algorithm with pruning.
During the search, every link will be added to
every alignment in the n-best list and then
update the n-best list.

• During the search, states those are indistinguish
will be recombined

An illustration
N=2

Start state

Intermediate state

Terminal state

Discarded state

Experimental Results

Statistics of training corpus (Train), bilingual dictionary (Dict),
development corpus (Dev) and test corpus (Test)

Experimental Results (cont.)

Comparison of AER for results of using IBM Model 3 (GIZA++) and
log-linear models

Experimental Results (cont.)

Comparison of AER for results of using IBM Model 5 (GIZA++) and
log-linear models

Experimental Results (cont.)

Comparison on AER for various symmetrization methods: intersection,
union, refined method and log-linear combination (i.e. M3 C->E + M3 E->C)

Experimental Results (cont.)

Effect of number of features and size of training corpus on search
efficiency

Experimental Results (cont.)

Resulting model scaling factors

Experimental Results (cont.)

Precision, recall and AER over different gain thresholds
with the same model scaling factors

Future Work

• Exploit more knowledge sources ranging
from syntax-based models to various
linguistic resources

• Optimize the model parameters directly
with respect to AER

• Improve the efficiency of search algorithm
• Try on other language pairs

Thanks!

