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Abstract Identifying and correcting grammatical errors in the text written by non-native writers have received increasing

attention in recent years. Although a number of annotated corpora have been established to facilitate data-driven gram-

matical error detection and correction approaches, they are still limited in terms of quantity and coverage because human

annotation is labor-intensive, time-consuming, and expensive. In this work, we propose to utilize unlabeled data to train

neural network based grammatical error detection models. The basic idea is to cast error detection as a binary classification

problem and derive positive and negative training examples from unlabeled data. We introduce an attention-based neural

network to capture long-distance dependencies that influence the word being detected. Experiments show that the proposed

approach significantly outperforms SVM and convolutional networks with fixed-size context window.
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1 Introduction

Automatic grammatical error detection and correc-

tion for natural languages have attracted increasing at-

tention, for a large number of non-native speakers are

learning or using foreign languages. Take English as an

example. There are a large number of English learn-

ers around the world who need instantaneous accurate

feedback to help improve their writings[1]. In the do-

main of scientific paper writing in which English is the

main language, authors also need effective grammar

checkers to help them in composing scientific articles[2].

There have been several Shared Tasks addressing

grammar errors in recent years. HOO-2011[3], HOO-

2012[4], CoNLL-2013[5] and CoNLL-2014[6] Shared

Task all aim to correct grammar errors. The AESW

Shared Task[7] aims to identify sentence-level grammar

errors. These Shared Tasks help advance the research

of grammatical error detection and correction.

Despite these advances, the scarcity of annotated

data is still a major limitation on the research of gram-

matical error detection and correction. Researchers

need mass annotated data to train a grammar checker,

but unfortunately for them, there are only a small

amount of annotated corpora available in a limited

number of domains. Most annotated corpora are in the

domain of learner English, e.g., NUCLE[8] and CLC[9],

and others are from domains such as scientific papers,

e.g., AESW dataset[2]. In order to train their systems

with enough data, researchers use multiple corpora in-

stead of one corpus[10].

Data scarcity is partly due to difficulties in build-

Regular Paper

Special Issue on Deep Learning

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61522204 and 61331013 and the
National High Technology Research and Development 863 Program of China under Grant No. 2015AA015407. This research is also
supported by the National Research Foundation of Singapore under its International Research Centre@Singapore Funding Initiative
and administered by the IDM (Interactive Digital Media) Programme.

∗Corresponding Author

©2017 Springer Science +Business Media, LLC & Science Press, China



Zhuo-Ran Liu et al.: Exploiting Unlabeled Data for Neural Grammatical Error Detection 759

ing an elaborately annotated corpus needed for train-

ing of a grammatical error correction system, as de-

scribed by the team that built NUS Corpus of Learner

English[8]. In order to obtain a reliable annotation,

the team set up a guideline for annotators so that cor-

rections are consistent. To ensure that these annota-

tions are available, several annotators proposed their

correction independently, and annotations most agreed

upon were selected. Such annotating process is labour-

intensive and time consuming, and the quality of the

corpus is subject to human judgment and other factors

such as budget. For example, the team was unable to

perform double annotation for the main corpus due to

budget constraints. The team spent a long time (over

half a year) to annotate only 1 414 essays.

Given these difficulties in building annotated cor-

pus, we hope to utilize un-annotated error-free texts in

unsupervised training of a grammatical error correction

or grammatical error detection system. Previously, ef-

forts have been made to explore how realistic grammati-

cal errors could be counterfeited automatically from

error-free texts and therefore obtain a large amount of

annotated data[11-14]. We therefore follow the idea of

building a corpus by generating artificial errors, since

there are large numbers of un-annotated texts available

and most of them are error-free. We explore two ways

of artificial error generation, one of which is proved to

be effective in our experiment.

Training a system to correct grammatical errors

might be a more difficult task when there is no super-

vision, since there are numerous error types and our

method to generate artificial errors might not be so-

phisticated enough to cover all of them. We thus focus

on grammatical error detection instead of correction. It

is natural to address this task as binary classification,

in which we make prediction as to whether a word is

grammatically correct.

2 Background

2.1 Problem Statement

The goal of word-level grammatical error detection

is to identify grammar errors at the word level. For

example, given a sentence shown below, a grammatical

error detection system is expected to correctly identify

the erroneous word “birds” highlighted by an underline:

An ugly birds was observed by the man yesterday.

The task of word-level grammatical error detec-

tion is formalized as such: given a sequence of token

X = (x1,x2, ...,xn) as input, the error detector out-

puts its prediction Y = (y1,y2, ...,yn) where yi denotes

the correctness of xi in terms of grammaticality.

We address this problem as a binary classification

problem. In order to predict yt given the current word

xt and the whole sentence X = (x1,x2, ...,xn), we

need to find a function g(·) to calculate the conditional

probability of each yt given xt and the whole input

sequence X:

p(yt|xt) = g(xt,X),

where

yt =

{
1, if xt is correct,
0, otherwise.

Our aim is to build a suitable classification model for

g(·).

2.2 SVM Model for Error Detection

A natural approach is to use support vector ma-

chine (SVM) to perform classification[15-16]. SVM

is trained given a training dataset in the form of

{(x1,y1), ..., (xn,yn)}, where xi represents a token

with a set of selected linguistic features, and yi de-

notes the grammatical correctness of the token. It finds

a maximum-margin hyperplane that separates correct

words from incorrect ones.

The problem with this approach is that we need to

manually design features in xi. Since human are unable

to tell precisely which features are relevant, human-

designed features are inadequate in some aspects while

being redundant in others. As a result, these designed

features are unable to capture all regularities, which

might hurt the performance of our error detector.

2.3 Convolution Network with Fixed Window

Size

To circumvent the problem with feature engineering,

a natural thought is to utilize the capability of neural

networks in automatic feature extraction[17]. The sim-

plest way is to take into consideration a fixed-size win-

dow of words around the current word as its context by

applying temporal convolution over the fixed-size win-

dow. In the example sentence given in Subsection 2.1,

when considering the grammatical correctness of the

word “was” given a context window of size 3, the con-

text window would be “birds was observed”. The as-

sumption that underlies this method is that only neigh-

bouring words are grammatically related to the current

word.
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Here we formalize the method of neural network

with a fixed-size window. Given a word xi, its context

is:

ci = (xi−w/2, ...,xi, ...,xi+w/2).

Let f(·) denote a temporal convolution operation with

the input frame size equal to the dimension of xi, the

output frame size equal to 1, and the kernel width equal

to the size of a fixed-size window. A score si of the

current word xi is calculated by si = f(ci) which rep-

resents grammatical features within the window. This

score then goes through a sigmoid layer and yields the

probability of yi: p(yi|xi, ci) = σ(si).

The first problem with this method is that it is in-

capable of capturing long-distance dependency. With

a fixed window size, the error detector is unable to

take into consideration word contexts beyond the win-

dow size, while long-distance grammatical dependency

is quite common a phenomenon. For example, in order

to determine whether “was” is incorrect, we would need

to take “yesterday” into consideration, which requires

a large size of context window.

Another problem is that all words within the con-

text window are taken into consideration indiscrimi-

nately. In the example above, “was” might not care

about what was done to the birds when determining

the verb tense, but “observed” is given equal attention

regardless of the fact that it has no influence on verb

tense.

3 Approach

3.1 Model Architecture

Our intuition is to first encode the input sequence

into a sequence of hidden states which contain relevant

grammatical information, and then make predictions

given a word and its context (see Fig.1). Thus our

model consists of two parts: an encoder that adopts a

typical architecture of bi-directional LSTM network[18],

and a classifier that makes predictions based on hidden

states of the encoder.

3.1.1 Encoder

The encoder takes as input a sentence S of

length n, represented by a sequence of vector X =

(x1,x2, ...,xn). In an LSTM recurrent neural network,

input X is processed through time and produces a se-

ries of memory states (c1, c2, ..., cn) and hidden states

(h1,h2, ...,hn). In order to counterbalance the impact

of time on hidden states we process the input X twice,

forward and backward, to fully encode the information

that the classifier needs.

1

Prediction

Weighted

Context

Bi-Directional

LSTM

Word

Embeddings

One-Hot

Representation

of Words

1 0 1

An ugly birds ... .

Fig.1. Model architecture. The input of the network is a sentence
“an ugly birds was observed by the man yesterday” in the form
of one-hot representation. The representation is then converted
into continuous word-embeddings and encoded by a bi-directional
LSTM encoder. The encoded information is reweighted by an
intra-attention mechanism at each time-step, on which the clas-
sifier judges the grammaticality of each word.

The forward LSTM updates its memory state −→ci
and hidden state

−→
hi at each time-step t:

[
−→
ht;
−→ct ] =

−−−−→
LSTM([

−−→
ht−1;

−−→ct−1]).

Similarly, memory state ←−ci and hidden state
←−
hi are

updated by the backward LSTM at time-step t:

[
←−
ht;
←−ct ] =

←−−−−
LSTM([

←−−
ht+1;

←−−ct+1]).

The encoder outputs a hidden tape h̃ =

(h̃1, h̃2, ..., h̃n), where

h̃t =



−→
ht

←−
ht


 ,

with [·] denoting the concatenation of vectors.

3.1.2 Classifier with Intra-Attention

To predict whether the word at time-step t is gram-

matically problematic, the classifier computes a score

given the current word xt and its context at. This score

st then goes through a sigmoid layer and makes a bi-

nary prediction, with 1 denoting grammatically correct
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and 0 denoting incorrect. Note that the classifier does

not hold its own state as a decoder does in a traditional

encoder-decoder architecture.

To address the problem of long-distance depen-

dency, we incorporate an intra-sentence attention

mechanism[19] in our classifier, where all hidden states

of the encoder are taken into consideration and the at-

tention of the classifier on all positions of the sentence

is dynamically adapted. To describe formally, we com-

pute the context at around the word xt as an attention-

weighted sum of {h̃1, h̃2, ..., h̃n}:

at =
∑

i

αt,i · h̃i,

where

αt,i =
exp(Et,i)∑
j exp(Et,j)

,

Et,i = h̃t · h̃i.

Vector at represents the grammatical and semantic

context at position t. A word is considered to be gram-

matically erroneous if the word xt does not fit into the

current context, i.e., it is incompatible to place xt at

position t given the context at. The score st is com-

puted as follows:

st = xT
t ·W · at + b,

where b is the bias.

Then the probability can be calculated as

p(yt|xt, {x1,x2, ...,xn}) = σ(st).

By incorporating intra-attention mechanism, we

provide a latent structure for the model to learn gram-

matical relations between words. This makes a lot of

sense because the grammaticality of a word is depen-

dent more on the words that have strong grammatical

relation with it, while other words are negligible when

making predictions. For example in Fig.1, when the

model tries to determine whether “birds” is correct in

terms of the number of the noun, it will pay a strong at-

tention to “An”, which indicates that the noun “bird”

should take its singular rather than plural form.

3.2 Noise Generation

Traditionally, a large set of {(X(n),Y (n))}Nn=1 is

needed to effectively train such a grammatical error de-

tector. However when only {X(n)}Nn=1 is given, the

key issue now becomes how to obtain the correspond-

ing {Y (n)}Nn=1.

We adopt the idea of using artificial errors for train-

ing. It is crucial to find a suitable algorithm for the er-

ror generator to produce realistic grammatical errors,

since the performance of the model relies heavily on the

paradigm it observed during training. Since our task is

to detect grammatical errors on the word level, we only

consider substitution errors. We compare two ways of

substituting the original word for an erroneous one.

3.2.1 Uniform Random Substitution

The simplest way is to substitute a word in a ran-

dom position with a random word from the vocabulary.

The problem with this approach is that some artificial

errors generated in this way are apparently irrelevant.

For example, it could substitute a word from the

sentence “An ugly bird was observed by the man yes-

terday.” to generate such a sentence as “An ugly bird

was dog by the man yesterday.” One potential problem

is that it might be too easy for our classifier to discrim-

inate such erroneous words from the correct ones.

3.2.2 Substitution with Linguistic Knowledge

We carefully examined a number of erroneous

paradigms and found some characteristics common to

all grammatical errors, regardless of the terminology

and commonly seen patterns of the domain. To briefly

summarize it, errors usually appear when a correct

word is substituted by another word, which comes from

a finite set of words linguistically related to it, because

this set of words possess the same lemma or the same

part-of-speech tag.

There is an inexhaustible list of how linguistic know-

ledge works in substitution. Here we only present seve-

ral examples in Table 1.

Combining these two methods, uniform random

substitution and substitution with lingustic knowledge,

we are able to generate 16 types of grammatical errors

out of 28 specified by CoNLL-2014 Shared Task[6]. Er-

ror types that can be generated are: Vt, Vm, Vform,

SVA, ArtOrDet, Nn, Npos, Pform, Pref, Prep, Wci,

Wform, Spar, Trans, Mec, Others. Most of remaining

error types we are unable to generate are semantic er-

rors (Smod, Rloc-, UM), or style problems (Wa, Wtone,

Cit), or sentence level problems (Srun, Sfrag, WOinc,

WOadv).

Details of artificial error generation process that in-

corporates linguistic knowledge are described in Algo-

rithm 1, which formalizes the construction of substi-

tution set, and in Algorithm 2, which formalizes the
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Table 1. Examples of Substitution with Linguistic Knowledge

POS Tag Original Noise Example
VB built build, builds, building, ... Workers built the park centuries ago.

Workers build the park centuries ago.
NN eggs egg All eggs were put into the same basket.

All egg were put into the same basket.
DT an a, this, these, ... There is an apple on the table.

There is a apple on the table.
RB suitably suitable Candidates must be suitably qualified students.

Candidates must be suitable qualified students.
IN of in, by, for, at, ... This book consists of 12 chapters.

This book consists by 12 chapters.

process of error generation by using the substitution

set built in Algorithm 1.

Algorithm 1. Building Substitution Set

1: PoS-tag the input text
2: Build a dictionary D of (token, PoS − tag)
3: for all (token, pos) in D do

4: if pos in {CC} or {DT, PDT} or {PRP, PRP$} or {IN,
TO, RP} or {WDT, WP, WP$, WRB} then

5: Add token to the corresponding substitution set Ci

6: else if pos in {NN, NNP, NNPS, NNS} or {VB, VBD,
VBG, VBN, VBP, VBZ} then

7: lemma← Lemmatise token

8: Add token to the corresponding substitution set Ci

9: else if pos in {JJ, JJR, JJS} or {RB, RBR, RBS} then
10: stem← Stem token

11: Add token to the corresponding substitution set Ci

12: end if

13: end for

Algorithm 2. Error Generation

1: for all sentences S in training text do

2: Get word w at a random position of S
3: w′ ← w

4: Search for substitution set Si that contains w

5: if such Ci does not exist or Ci contains only 1 element
then

6: while w′ == w do

7: w′ ← Select a random word from dictionary D

8: end while

9: else

10: while w′ == w do

11: w′ ← Select a random word from Ci

12: end while

13: end if

14: Replace w in S with w′

15: end for

4 Experiments

4.1 Settings

4.1.1 Data

We use data mainly from three sources (Table 2):

• ACL Anthology 1○ (ACL): training set;

• AESW Shared Task Dataset (AESW)[7]: develo-

pment and test sets;

• CCL Anthology 2○ (CCL): development and test

sets.

Table 2. Statistics of Datasets Used in the Experiments

Set Tok. Pct. (%) Vocab. Sent.

AESW Development 24.4k 6.0 4.1k 1.0k

Test 24.7k 5.9 4.1k 1.0k

CCL Development 2.6k 5.5 892 125

Test 2.8k 5.2 934 126

ACL Train 60.4M 4.9 166.5k 2.9M

Note: Tok. stands for the number of tokens, Pct. stands for
percentage of tokens that are marked incorrect, Vocab. stands
for the size of vocabulary, and Sent. stands for total number of
sentences.

For training set, we use sentences from papers that

appear in ACL Anthology. We crawl all papers up to

year 2015, and then select sentences that end with a

period, with a length of longer than 5 but no longer

than 50, which may contain several clauses separated

by commas, colons or semicolons. Formulae and refe-

rences are excluded, numbers are substituted with a

special 〈num〉 token, and parentheses are removed to-

gether with the contents in between. We limite the vo-

cabulary to tokens with at least a word-frequency of 2

to eliminate most spelling errors, and replace all OOVs

with a special 〈unk〉 token.

To corroborate that the model trained by us actu-

ally works with realistic grammatical errors, we use two

human-annotated datasets as our development and test

set.

The first one is the test set of AESW 2016 Shared

Task, but we only use a portion of the erroneous

sentences from paragraphs with the attribute of “do-

main=Computer Science”; we converte the data for-

mat by preserving all words between “〈del〉〈/del〉” and

marking them as incorrect, while removing those be-

tween “〈ins〉〈/ins〉”.

1○http://www.aclweb.org/anthology/, May 2017.
2○http://www.cips-cl.org/anthology, May 2017.
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For example, if the original annotated sentence is

“More discussions 〈del〉about〈/del〉 〈ins〉on〈/ins〉

these issues will be provided in the remainder of the

monograph.”,

we convert it into the form of:

“More discussions about these issues will be pro-

vided in the remainder of the monograph.”

The second human-annotated dataset is some erro-

neous sentences from papers in CCL Anthology anno-

tated by us. These papers contain grammatical errors

since most of them are written in Chinese.

A potential problem with the way we annotate our

dataset is that the case of multiple gold-standard is not

well addressed. For example, in the sentence “An ugly

birds was observed by the man yesterday.”, reporting

errors on any one or several of “an”, “birds”, or “was”

should be a correct prediction. However as we are only

annotating one word as erroneous, other correct pre-

dictions are counted as incorrect, which affects model

performance.

4.1.2 Baselines

To the best of our knowledge, word-level grammat-

ical error detection task has never been researched be-

fore. Thus we use the two methods described in Sub-

section 2.2 and Subsection 2.3 respectively. We com-

pare our method with two baselines, both of which are

trained on the ACL training set with artificial errors.

We further compare our method with yet another base-

line — RNNLM[20], which is trained on un-annotated

error-free ACL sentences. Ultimately, we build up three

baselines and compare our method with them:

• support vector machine (SVM)[16],

• convolutional network (Conv)[17],

• recurrent neural network based language model

(RNNLM)[20].

In our baseline SVM, we take into consideration the

context in a fixed-size window of size 5 around the cur-

rent word. The SVM classifier then gives the prediction

of whether the current word is grammatically correct

in the sentence. We first train an n-gram model with

KenLM[21] on the whole training set without artificial

errors, with n up to 3. We then use n-gram scores as

the input features into the SVM. In our experiment we

use the open-source tool LibLinear[22].

As described in Subsection 2.3, we build the base-

line referred to as Conv in the following way. We use

word-embeddings pre-trained using Word2Vec model in

gensim[23], the dimensionality of which is set to 50 em-

pirically. A temporal convolution is performed over a

window of fixed size 3. The kernel width is set to the

size of a fixed-size window. This model is implemented

using Torch7 3○.

An alternative way to make use of unlabeled

error-free data is by training a language model on

them. We adopt the state-of-the-art language model

— RNNLM[20] for one of our baselines. An RNN-based

language model is first trained on error-free texts with

RNNLM-Toolkit[24], which models the probability of a

word given a preceding sequence: p(wt|w1w2 · · ·wt−1).

An intuition is that when we substitute wt with a ran-

dom word, the probability would decrease if wt is gram-

matical. Following this criterion we build a classifier as

our baseline.

4.1.3 BiLSTM with Intra-Attention

Our model described in Subsection 3.1 is imple-

mented using Tensorflow 4○. We use cross-entropy as

our loss function to optimize. We perform gradient

clipping by global norm[25] with the function provided

in Tensorflow. The dimension of word-embedding and

hidden states is set to 150, as a trade-off between perfor-

mance and training time. The word-embedding matrix

is initialized with random uniform distribution within

the range of ±0.05.

4.2 Results and Discussion

Table 3 and Table 4 present the results: precision

(P) and recall (R), of the experiments of three baselines

(SVM, Conv, and RNNLM) and our model (BiLSTM),

using uniform random errors (uni.) or errors counter-

feited with linguistic knowledge (ling.).

Table 3. Performance on the AESW Test Set

Measured by F0.5(%)

Method Noise P R F0.5

SVM uni. 13.53 6.27 10.99

ling. 12.51 7.15 10.88

Conv uni. 6.25 50.10 7.57

ling. 18.13 4.46 11.24

RNNLM - 8.95 21.52 10.13

BiLSTM uni. 17.16 5.39 11.95

ling. 18.71 7.48 14.40

3○http://torch.ch/, May 2017.
4○https://www.tensorflow.org/, May 2017.
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Table 4. Performance on the CCL Test Set

Measured by F0.5(%)

Method Noise P R F0.5

SVM uni. 7.40 1.34 3.89

ling. 6.25 1.34 3.61

Conv uni. 5.66 57.43 6.91

ling. 6.66 0.67 2.40

RNNLM - 11.43 23.48 12.74

BiLSTM uni. 16.00 2.68 8.03

ling. 21.05 8.05 15.91

From the two tables we can see that our model out-

performs the two baselines on both human-annotated

datasets (AESW and CCL). The F0.5 scores might seem

low, but they are actually good results since these mod-

els are trained without supervision.

4.2.1 Effect of Error Types

If we focus on the task of detecting a limited num-

ber of error types (verb form, noun number, preposi-

tion misuse, article misuse), the model’s performance is

better on the CCL test set, but is weaker or generally

unchanged on the AESW test set. This is probably

because in the annotating phase of the CCL test set,

we focuse heavily on these common types of errors and

some other types of errors are neglected. The results

are shown in Table 5 and Table 6, where w/o means

without, and w/ means with.

Table 5. Comparison on the AESW Test Set

Error Type Attention P R F0.5

All w/o 14.84 6.61 11.88

w/ 18.71 7.48 14.40

Limited w/o 19.87 4.25 11.45

w/ 18.48 6.27 13.31

Table 6. Comparison on the CCL Test Set

Error Type Attention P R F0.5

All w/o 23.40 7.38 16.32

w/ 21.05 8.05 15.91

Limited w/o 26.00 8.72 18.62

w/ 27.90 16.10 24.34

4.2.2 Effect of Attention

To verify our intra-attention help improve model

performance, we removed the attention and performed

the same experiment. Comparison of models with and

without attention is shown in Table 5 and Table 6.

Though the intra-attention mechanism works in im-

proving overall performance, in some individual cases it

may fail.

We believe that a more sophisticated way of error

generation is needed, because currently only those po-

sitions where substitution happens have a chance to be

labeled incorrect (“on-site-error” paradigms). But for

the model to learn grammatical relations by attention

mechanism, we need massive paradigms where substi-

tution causes another position to be labeled incorrect

(“off-site-error” paradigms).

Take this sentence as an example:

“An ugly bird was observed by the man yesterday.”

If we substitute “ugly” with “beautiful”, our sys-

tem will automatically annotate “beautiful” as incor-

rect (on-site-error):

“An beautiful bird was observed by the man yes-

terday.” But our model will never know why it is in-

correct. What we need instead is off-site-errors:

“An beautiful bird was observed by the man yes-

terday.”

So that the model knows “beautiful” is compatible

with “a” but not with “an”.

Unfortunately our method does not provide such

a mechanism to massively produce “off-site-error”

paradigms; therefore our model has to rely on very

few coincidentally generated “off-site-error” paradigms

which are too sparse.

Our current method also introduces some substitu-

tions which should not be counted as errors. For exam-

ple, if “yesterday” is substituted by “today”:

“An ugly bird was observed by the man today.”

“today” is annotated as incorrect under our method,

while it does not actually constitute grammatical er-

rors, which therefore hurts model performance to some

degree.

4.2.3 Similarity Between Artificial and Real

Grammatical Errors

Artificial grammatical errors are generated for train-

ing, while human-annotated texts are used for test sets.

In order to measure the similarity between artificial

training data and real ungrammatical sentences, we

provide statistics on the syntactic information of train-

ing set and test sets.

As shown in Table 7, the distribution of ungram-

matical words in terms of part-of-speeches is generally

consistent between artificial data (ACL training set)

and real data (AESW and CCL test set).
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Table 7. Percentage of Words with Different Part-of-Speeches

That Cause Grammatical Errors (in Descending Order)

Real Artificial

AESW CCL ACL

NOUN(28.47) VERB(33.55) NOUN(45.65)

VERB(11.47) NOUN(20.80) VERB(22.44)

ADJ(9.24) PREP(16.10) ADJ(22.22)

PREP(8.77) DET(6.04) ADV(4.47)

DET(7.01) ADJ(5.36) PREP(3.50)

ADV(4.18) WH(3.35) DET(0.64)

PRON(1.28) ADV(2.68) PRON(0.23)

WH(1.07) PRON(1.34) WH(0.18)

CONJ(0.87) CONJ(0.67) CONJ(0.16)

Note: Real PoS-tag is not shown in this table but merged into
several classes: e.g. “VERB(33.55)” means words with PoS-tags
“VB”, “VBD”, “VBG”, “VBN”, “VBP” and “VBZ” count for
33.55% of all erroneous words.

4.2.4 Using Human-Annotated Data in Training

To verify our method of error generation is useful

for training an error detection model, we train and test

a model with the same architecture on a blender of ar-

tificial data and the original training data of AESW

Shared Task. To maintain the consistency of the text

domain, we extract only sentences in “Computer Sci-

ence” domain with errors (approx. 30k sentences) and

add them into the training set to form a blender of ar-

tificial and real data. Experiments show that the per-

formance of the model trained on only artificial data is

comparable to that trained on the blender (Table 8).

Table 8. Performance of the Model Trained on a Blender of

Artificial and Real Data

Testset P R F0.5

AESW 13.84 3.91 9.18

CCL 24.00 8.05 17.19

4.2.5 Testing Model in a Realistic Scenario

In real-life setting, the proportion of sentences that

contain grammatical errors depends on the proficiency

in the language of the persons who produce those sen-

tences. We blend grammatical sentences with ungram-

matical ones with different ratios to form several test

sets and evaluated our model on them.

Results (Table 9) show that model performance de-

teriorates with the increase of the percentage of the

grammatical sentences in the test set, which is possibly

because an artificial error is introduced in every sen-

tence of the training dataset. Error rate of training

data will have to be considered in future research.

Table 9. Performance on the Test Sets with

Different Error Rates

Error (%) Test Set P R F0.5

100 AESW 18.71 7.48 14.40

CCL 21.05 8.05 15.91

50 AESW 9.72 7.48 9.17

CCL 11.53 8.05 10.61

10 AESW 2.04 7.48 2.39

CCL 2.42 8.05 2.82

Note: Error (%) denotes the percentage of sentences that contain
at least one grammatical error.

4.2.6 Examples

Our model is found to perform well in some cases,

while failing to identify others. To analyse what type

of errors it deals with well, and the reasons that cause

its failure, we sample some predictions as presented be-

low in Table 10. Note that the table contains only a

partial list of error types our model detected. Since we

only detect errors without inferring their types, we are

unable to provide the full list of error types our model

is able to detect.

Table 10. Examples of Model Predictions

Error Type Example

Collocation (Ex.1) In additions , we present an in-depth
analysis that provides valuable insight into the
characteristics of alternative solutions.

Morphology (Ex.2) In our work, lexical level features in-
clude the two entities, their NER tags, and
the neighbor tokens of these two entities.

Genre (Ex.3) For the purpose of this study, we focus
on one of our live broadcast, Premier Wen
Talks Online with Citizens on Feb 28, 2009.

Domain (Ex.4) Note that, the communication cost of
the PAROS layer is constant and dependent
on the network size and the gossiping period.

Wrong position (Ex.5) In summary, filtering the sentences
whose polarities opposite to the overall ori-
entation is significant for constructing a high
quality training set.

Other (Ex.6) Compared with other methods, the our

heterogeneous graph method improves the re-
sults significantly.

Note: Incorrect words are in bold face, and errors detected by
our model are highlighted by underlines.

It works well with collocations, as in Ex.1. It also

works well with morphological problems, as Ex.2 shows.

However it is incapable of detecting errors of genre as

in Ex.3. In Ex.4, it mistook as incorrect the words out

of the domain of the training data. It is apparent in

Ex.5 that our model is aware of the missing “are” be-

tween “polarities” and “opposite”, but it reports errors
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at a different position. There are other error types our

model did not handle well with, such as redundant de-

terminers as in Ex.6.

5 Related Work

5.1 Grammatical Error Detection and

Correction

Several Shared Tasks on grammatical error detec-

tion or correction have been carried out in recent years,

including HOO-2011[3], HOO-2012[4], CoNLL-2013[5],

and CoNLL-2014[6]. These four Shared Tasks all focus

on grammatical error correction of English written by

non-native speakers. The AESW Shared Task[7] pro-

poses to evaluate scientific writing automatically based

on sentence-level error identification. Different from

these Shared Tasks, we focus on word-level grammatical

error detection, which is a pilot step towards unsuper-

vised approach to error correction.

To address the issue of grammatical errors, re-

searchers explored and utilized various methods. For

example classification method is used by the top rank-

ing team[26] in CoNLL-2013 Shared Task. The top

ranking team[10] of CoNLL-2014 Shared Task incorpo-

rated in the team’s system a statistical machine trans-

lation (SMT) component, which translates erroneous

English into correct English. With the development

of neural machine translation (NMT) and attention

mechanism[19], the top team[27] of AESW Shared Task

adopted the NMT approach to grammatical error cor-

rection.

In comparison, we adopt a typical architecture of

bi-directional LSTM[18] on the encoder side[28], but re-

place the decoder with a classifier. Since error types are

not given in unsupervised training, our classifier does

not infer error types but only makes binary predictions.

5.2 Error Generation

To obtain enough training data, various approaches

have been employed to generate artificial errors.

Markov logic network is used for statistical grammar

error simulation[13]. An automatic tool for error gene-

ration was developed[12], which takes as input a corpus

and error generation rules. Error inflation is used in

UI system[29] in HOO-2012 Shared Task, and a similar

method was performed on Japanese[14]. To enlarge the

size of training set, artificial errors were injected into

the corpus by Yuan and Felice in CoNLL-2013 Shared

Task[30]. Later Felice and Yuan further researched the

probabilistic manner of artificial error generation with

linguistic information[11].

Different from [12] which requires a set of rules to

work, we build substitution set automatically from un-

annotated corpus based on POS tag or lemma. To

compare with [11, 29-30] whose methods of error gene-

ration are based on annotated corpus, we use only un-

annotated error-free texts without supervision.

5.3 RNNs and LSTM Units

Recurrent neural network (RNN) with long short-

term memory (LSTM) or gated recurrent unit (GRU)

has shown a mighty capability to encode information

over long sequences[28]. The attention mechanism has

enabled a bi-directional RNN with GRU to achieve even

better performance in machine translation[19] by allow-

ing the decoder to explicitly make use of the mem-

ory of the encoder. Upon the emergence of attention

mechanism, it has been applied to many NLP topics

other than machine translation. Grammatical error

correction is of no exception. Schmaltz et al. used

a uni-directional LSTM network with attention mecha-

nism and achieved the best performance in the AESW

Shared Task[27].

Different from [27], we do not generate a target sen-

tence since we do not attempt to correct errors. There-

fore we replace the decoder with a binary classifier,

which takes into consideration the information from the

BiLSTM encoder.

6 Conclusions

In our work, we explored unsupervised word-level

grammatical error detection using only un-annotated

corpus as training data. We showed that it is a viable

way for machines to learn grammatical relations and

to predict grammatical errors. This inspires us to fur-

ther extend the unsupervised approach to grammatical

error correction. In the future, we plan to investigate

novel methods for generating artificial errors to enable

our model to learn better intra-sentence attention.
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