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Abstract

Being able to induce word translations from non-parallel data is often a prerequisite for cross-
lingual processing in resource-scarce languages and domains. Previous endeavors typically sim-
plify this task by imposing the one-to-one translation assumption, which is too strong to hold for
natural languages. We remove this constraint by introducing the Earth Mover’s Distance into the
training of bilingual word embeddings. In this way, we take advantage of its capability to handle
multiple alternative word translations in a natural form of regularization. Our approach shows
significant and consistent improvements across four language pairs. We also demonstrate that
our approach is particularly preferable in resource-scarce settings as it only requires a minimal
seed lexicon.

1 Introduction

Bilingual lexica provide word-level semantic equivalence information across languages, and prove to be
valuable for a range of cross-lingual natural language processing tasks (Och and Ney, 2003; Levow et
al., 2005; Täckström et al., 2013, inter alia). As building bilingual lexica from parallel corpora has been
solved by word alignment (Och and Ney, 2003), researchers have turned their attention to non-parallel
corpora. Accompanied by a small seed lexicon, non-parallel corpora are usually the only resources
available in resource-scarce languages and domains, making the task of bilingual lexicon induction both
important and challenging. A variety of statistical methods have been proposed to induce bilingual lexica
from non-parallel data (Rapp, 1999; Koehn and Knight, 2002; Fung and Cheung, 2004; Gaussier et al.,
2004; Haghighi et al., 2008; Ravi and Knight, 2011; Vulić et al., 2011; Vulić and Moens, 2013a; Vulić
and Moens, 2013b; Dong et al., 2015). With the surge of word embeddings trained by neural networks,
recent approaches that learn bilingual word representations from non-parallel data for bilingual lexicon
induction have also shown promise (Mikolov et al., 2013b; Vulić and Moens, 2015).

However, none of the existing methods explicitly considers multiple alternative translation, i.e., the
phenomenon that one source language word may have multiple possible translations in the target lan-
guage. For example, the (romanized) Chinese word “qiche” can be translated to “car” or “automobile” in
English, while the English word “car” can mean “qiche” or “chexiang” (railway carriage) in Chinese. Al-
though prevalent among natural languages (Resnik and Yarowsky, 1999), multiple alternative translation
is basically ignored by prior bilingual lexicon inducers; instead, they typically impose the one-to-one
translation assumption (Vulić and Moens, 2013b) for simplicity. This represents a major drawback of
existing bilingual lexicon induction approaches.

There has been one study that shows potential for tackling this issue. It introduces the Earth Mover’s
Distance (EMD) (Zhang et al., 2016). Given learned bilingual word embeddings, the EMD is used as a
post-processing step to match vocabularies cross-lingually, which can be interpreted as word translation.
Unlike the traditional K nearest neighbors leaving the determination of the number of translation pro-
posals K to the user, the EMD automatically determines the list of translation candidates for each source
word.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



qiche

chexiang

automobile

car

(b)(a)

qiche

chexiang

automobile

car

Figure 1: An illustration of bilingual word embeddings for translating from (romanized) Chinese to En-
glish. Arrows indicate translations, and solid ones are correct. (a) The nearest neighbor incorrectly trans-
lates “chexiang” to “automobile”, and does not allow finding “car” as the other translation of “qiche”.
(b) The Earth Mover’s Distance translates correctly. It associates words with weights, as indicated by the
sizes of the shapes.

In this work, we propose to bring the EMD’s capability to training. Intuitively, as the EMD in the
post-processing step is able to connect a source word with multiple target word translations, it can play
a more important role during training by driving the word vectors of these mutual translations to be
closer. We therefore expect that the bilingual word embeddings learned this way will be more suitable
for encoding multiple alternative translation by harnessing the power of the EMD. Our experiments
validate the effectiveness of this strategy. A summary of our contributions is as follows:

• We introduce the Earth Mover’s Distance into the training of bilingual word embeddings, and inter-
pret it as a natural form of regularization for the overall learning objective (Section 3).

• We demonstrate significant and consistent performance improvement from our strategy across four
language pairs (Sections 6.1 and 6.2).

• We investigate the effect of the number of seed word translation pairs, and find our approach to be
most appealing with few seeds, in line with typical resource-scarce scenarios (Section 6.3).

2 Background

As an embedding-based approach to bilingual lexicon induction, the model consists of matrices W S ∈
RD×V S

and WT ∈ RD×V T
, which pack up D-dimensional word embeddings of source and target lan-

guages with vocabulary sizes V S and V T, respectively. After training, these bilingual word embeddings
are supposed to properly lie in theD-dimensional space that encodes cross-lingual semantic equivalence.
To build a bilingual lexicon, or equivalently, to translate a source word into the target language, the near-
est neighbor is typically employed to retrieve the target word embedding that is closest to the source
word embedding.

The nearest neighbor has its limitations, as argued by Zhang et al. (2016). For one thing, the retrieval
operation is inherently local (Figure 1(a)). Instead, they introduce the Earth Mover’s Distance (EMD),
which offers to match two sets of points with minimum total cost. For the word translation task, bilin-
gual word embeddings can be naturally viewed as two sets of points. Therefore, given bilingual word
embeddings, the EMD can perform word translation by providing optimal vocabulary-level matching in
a holistic fashion (Figure 1(b)). This is achieved via the following optimization program:

min
T

V T∑
t=1

V S∑
s=1

TtsCts

s.t. Tts ≥ 0

V S∑
s=1

Tts ≤ fTt , t ∈
{
1, ..., V T

}
V T∑
t=1

Tts = fSs , s ∈
{
1, ..., V S

}
(1)



where Cts defines the cost of matching the target word wT
t and the source word wS

s (illustrated by the
distance between words in Figure 1), and fTt (resp. fSs ) is the weight associated with wT

t (resp. wS
s )

(illustrated by the sizes of the shapes in Figure 1(b)). The weights are chosen to be the number of times
a word appears in the corpus. Once the linear program is solved, the matrix T stores the matching
information between source and target vocabularies. This cross-lingual matching can be interpreted as
translation. For example, a non-zero Tts can be seen as evidence to translate the source word wS

s to the
target word wT

t .
Besides the vocabulary-level matching, the EMD program brings an additional benefit. As mentioned

in Section 1, it automatically retrieves multiple translations for a source word as long as the program
finds it appropriate (cf. Figure 1). In the following section, we will strengthen this desirable capability
by bringing the EMD program from a post-processing step to the training phase.

3 Approach

In typical scenarios, resources available to bilingual lexicon inducers include non-parallel corpora CS
and CT, and a seed lexicon d. In order to utilize these resources to train bilingual word embeddings, a
straightforward idea is to devise a learning objective that combines a monolingual term and a seed term.

The monolingual term Jmono is responsible for explaining regularities in corpora CS and CT. Since
the two corpora are non-parallel, Jmono consists of two monolingual submodels that are independent of
each other:

Jmono

(
W S,WT

)
= J S

mono

(
W S
)
+ J T

mono

(
WT

)
. (2)

As the common practice (Gouws et al., 2015), we choose the well established skip-gram model (Mikolov
et al., 2013a) for our monolingual term.

The seed term Jseed encourages embeddings of word translation pairs in a seed lexicon d to move
near, which can be achieved via a L2 regularizer:

Jseed
(
W S,WT

)
= −

∑
〈s,t〉∈d

∥∥W S
s −WT

t

∥∥2 , (3)

where s ∈
{
1, ..., V S

}
and W S

s is the s-th column of W S (i.e. the embedding of the s-th source word
wS
s ), and notations are similar for the target side.
However, as shown in our experiment, a simple linear combination of the monolingual term and the

seed term is insufficient to provide satisfactory performance. We propose to introduce the Earth Mover’s
Distance into the training phase, as an additional term in the learning objective:

JEMD

(
W S,WT, T

)
= −

V T∑
t=1

V S∑
s=1

TtsCts (4)

with constraints
Tts ≥ 0

V S∑
s=1

Tts ≤ fTt , t ∈
{
1, ..., V T

}
V T∑
t=1

Tts = fSs , s ∈
{
1, ..., V S

}
. (5)

Note that, unlike the post-processing case (1), the ground distance matrix C is now parametrized by
bilingual embeddings W S and WT, and therefore adjustable during training.

Putting everything together, we arrive at our overall learning objective to maximize:

J
(
W S,WT, T

)
= Jmono

(
W S,WT

)
+ λsJseed

(
W S,WT

)
+ λeJEMD

(
W S,WT, T

)
(6)

with constraints (5) inherited from the EMD. The hyperparameters λs and λe control the relative weight-
ing of the terms. In this form, we can naturally view the EMD term as a regularizer that can potentially



drive the embedding space to be more suitable for inducing bilingual lexica, especially multiple alterna-
tive word translation pairs.

The joint maximization of the overall learning objective (6) is clearly non-convex. In order to take ad-
vantage of the efficient solver specialized for the EMD program, we propose an alternating optimization
procedure:

1. Fix W S and WT, and optimize with respect to T . This reduces to the usual linear EMD program
with fixed ground distance, and the optimization can be achieved with the existing solver.

2. Fix T , and optimize with respect toW S andWT. Now the optimization can be easily achieved with
stochastic gradient ascent.

4 Implementation

In this section, we describe details of a practical implementation of our approach.

4.1 Optimization

In our overall learning objective (6), unlike the other two, the EMD term JEMD requires an alternating
optimization procedure. In order to allow each term to contribute to the learning process, we follow
these steps. First, in each pass of the corpus (i.e. an epoch) the monolingual term Jmono and the seed
term Jseed are optimized with asynchronous stochastic gradient ascent (Gouws et al., 2015). Then, we
proceed to optimize the EMD term JEMD with the alternating optimization procedure. In Step 2 of the
procedure, we take M gradient ascent steps. This hyperparameter is related to λe, as they jointly affect
the strength of the EMD regularization. We are inclined to take small and many gradient ascent steps, so
we fix M = 10, 000 and tune λe on the validation set. Finally, the learning rate is decayed linearly at the
end of each epoch.

4.2 Adding Context Vectors

In the previous section, we have presented our model with word vectors W S and WT as the parameters.
In reality, each word is associated with a context vector as well (Mikolov et al., 2013c). While the usual
representation of a word for evaluation is simply a word vector, some authors have suggested adding
the context vector (Pennington et al., 2014; Levy et al., 2015). Previously this means a simple post-
processing step during evaluation, but in our setting we can bring the trick to training. Specifically, using
Euclidean distance as the ground distance, we would have parametrized Cts in the EMD term (4) as

Cts =
∥∥WT

t −W S
s

∥∥ . (7)

Considering the context vectors US and UT, we now reformulate the ground distance as

Cts =
∥∥(WT

t + UT
t

)
−
(
W S

s + US
s

)∥∥ . (8)

This modification affects both steps in the alternating optimization procedure. In addition, the seed term
also encourages corresponding context vectors to be close.

5 Experimental Setup

5.1 Data

In our experiments, the tested systems induce bilingual lexica from Wikipedia comparable corpora1 on
four language pairs: Chinese-English, Spanish-English, Italian-English, and Japanese-Chinese. Follow-
ing (Vulić and Moens, 2013a), we retain only nouns that occur at least 1,000 times in our corpora.2

For the Chinese side, we first use OpenCC3 to normalize characters to be simplified, and then perform
1http://linguatools.org/tools/corpora/wikipedia-comparable-corpora
2For Spanish-English and Italian-English, the cut-off frequency is 3,000 for a comparably-sized vocabulary.
3https://github.com/BYVoid/OpenCC



zh-en es-en it-en ja-zh
zh en es en it en ja zh

# tokens 21M 53M 57M 90M 65M 88M 38M 16M
vocabulary size 3,349 5,154 2,543 3,557 3,378 3,534 6,043 2,814

Table 1: Training set statistics. Language codes: zh = Chinese, en = English, es = Spanish, it = Italian,
ja = Japanese.

zh-en es-en it-en ja-zh
# test instances 1,938 1,860 2,051 2,320

# with multiple alternative translation 661 1,293 1,338 513

Table 2: Statistics of the test sets obtained by processing the gold standard lexica in the same way as
(Zhang et al., 2016). A good portion of the test instances come with multiple alternative translation in
the ground truth.

Chinese word segmentation and POS tagging with THULAC4. The preprocessing of the English side
involves tokenization, POS tagging, lemmatization, and lowercasing, which we carry out with the NLTK
toolkit5 for the Chinese-English pair. For Spanish-English and Italian-English, we choose to use Tree-
Tagger6 for preprocessing, as in (Vulić and Moens, 2013a). For the Japanese corpus, we use MeCab7 for
word segmentation and POS tagging. The statistics of the preprocessed corpora is given in Table 1.

5.2 Seed Word Translation Pairs

We build our seed lexicon in a way similar to (Vulić and Moens, 2013a). First, we ask Google Translate8

to translate the source side vocabulary. Then the translations in the target language are queried again in
the reverse direction to translate back to the source language, and those that don’t match with the original
source words are discarded. This helps to ensure the quality of the translations. Finally, a translation pair
is discarded if the target word falls out of our target vocabulary. We then take the most frequent S
translation pairs as the seed lexicon. We vary S in our experiment to examine the effect of the seed
lexicon size.

5.3 Evaluation Method

The limiting factor that prevents us from experimenting with truly resource-scarce language pairs is
the unavailability of gold standard lexica for evaluation. Our focus on multiple alternative translation
raises a higher demand that the gold standard lexica should include multiple possible translations for
source words. For Chinese-English, we use Chinese-English Translation Lexicon Version 3.09 as the gold
standard. For Spanish-English and Italian-English, we access Open Multilingual WordNet10 through
NLTK. For Japanese-Chinese, we use an in-house lexicon that meets our need. We reserve 10% of each
gold standard lexicon for validation, and the remaining 90% for testing. We list test set statistics for each
language pair in Table 2.

Following (Zhang et al., 2016), our evaluation metrics include accuracy A, precision P , recall R,
and F1 score. Accuracy is traditionally reported for the bilingual lexicon induction task, but it does not
reflect the handling of multiple translations. This evaluative tradition also proves the lack of attention for
multiple alternative translation. Therefore, we will be primarily looking at F1 score in our experiments.

4http://thulac.thunlp.org
5http://www.nltk.org
6http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger
7http://taku910.github.io/mecab
8https://translate.google.com
9https://catalog.ldc.upenn.edu/LDC2002L27

10http://compling.hss.ntu.edu.sg/omw



Method A P R F1

STAT 0.2430 0.1589 0.1594 0.1591
MONO+SEED 0.2652 0.1983 0.1747 0.1858

Ours 0.5134 0.3770 0.3385 0.3567

Table 3: Performance on Chinese-English lexicon induction with 100 seed word translation pairs.

Method Spanish-English Italian-English Japanese-Chinese
STAT 0.2384 0.2222 0.2117

MONO+SEED 0.2705 0.2350 0.1952
Ours 0.3686 0.3452 0.4111

Table 4: F1 scores for three language pairs with 100 seed word translation pairs.

5.4 Baselines

We compare our approach to two baselines:

1. Statistics-based (STAT) (Gaussier et al., 2004).

2. Monolingual and seed terms (MONO+SEED).

The first baseline (STAT) is the traditional statistics-based approach, conventionally considered the stan-
dard approach to bilingual lexicon induction (Gaussier et al., 2004). It represents each word with a vector
that encodes association strength between the word and seed words. We use a smoothed version of pos-
itive pointwise mutual information (PPMI) (Turney and Pantel, 2010) as the monolingual association
measure.

The second baseline (MONO+SEED) is our system without the EMD term (i.e. λe = 0). Comparison
with it allows us to observe the effectiveness of the EMD term.

As we focus on multiple alternative translation but existing methods do not address it, we post-process
the baselines by the EMD procedure (Zhang et al., 2016) to grant them the desired capability for a fair
comparison with our approach.11

5.5 Hyperparameters

Our approach inherits hyperparameters from the monolingual skip-gram model, and includes term
weights λs and λe. We set these hyperparameters based on tuning on the validation set, and observe
little performance difference as long as they lie within a reasonable range. The monolingual hyperpa-
rameters are set as follows: embedding size D is 40; window size is 5; 5 negative samples; subsampling
threshold is 10−5; initial learning rate is 0.02; 20 training epochs. The statistics-based baseline uses a
window size of 5 as well. The seed term weight λs is set to 0.01, and the EMD term weight λe is 0.0001.

6 Results

6.1 Performance on Chinese-English

We first report experimental results on Chinese-English lexicon induction with 100 seed word translation
pairs, as shown in Table 3. We observe significant performance gains over both baselines, as measured by
all evaluation metrics. In particular, comparing our approach with the MONO+SEED baseline highlights
the effectiveness of introducing the EMD program into the training phase. As for training time, our
approach takes about 4 hours, compared to 2 hours of MONO+SEED, due to the introduction of the EMD
regularization.

11We found EMD post-processing to be generally superior to nearest neighbors, in line with (Zhang et al., 2016).
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Figure 2: F1 scores for the four language pairs with varying number of seed word translation pairs.

6.2 Performance on Other Language Pairs

We next experiment with the other three language pairs, i.e., Spanish-English, Italian-English, and
Japanese-Chinese. The tested systems are provided with 100 seed word translation pairs as well. We
only report the resulting F1 scores in Table 4, as the other evaluation metrics exhibit similar trends. Rel-
ative to Chinese-English, these three language pairs should be more closely related. Nevertheless, the
improvements of our method remain large, regardless of language pairs. The consistent performance
signifies the generalizability of our approach across different language pairs.

6.3 Effect of Seed Lexicon Size

In this section, we investigate how the number of seed word translation pairs may affect the performance
of the bilingual lexicon inducers. We vary the seed lexicon size in {20, 50, 100, 200}. Figure 2 shows
the F1 scores of the tested systems for the four language pairs. We observe that our system always attains
high performance for the closely related language pairs Spanish-English and Italian-English, even when
the seeds are as few as 20. For the more distant language pairs Chinese-English and Japanese-Chinese,
50 seeds suffice. In contrast, a limited number of seeds considerably degrades the performance of the
baseline systems. Therefore, our system is particularly appealing in realistic resource-scarce scenarios
for its minimal requirement for a seed lexicon, which is labor-intensive to compile.

6.4 Qualitative Analysis

In order to obtain a clearer view of the difference between the tested systems, we probe into the em-
beddings trained by them through a few examples. The Chinese-English translations in Table 5 imply
that embeddings trained by our method appear superior. Although the two baselines may output more
translations than our system, they often miss the correct ones, as shown by the examples of “shan” and
“jianzhu”. These translation differences should be eventually attributed to the quality of the underlying
bilingual word embeddings, and in turn to the performance of the systems.



STAT MONO+SEED Ours

qiche

good automobile car
maker competitor automobile

customer auto
luxury

shan

palm middle hill
flat part mountain

waterfall
dune

barley
chestnut

citrus

jianzhu

architecture foundation building
monument interior

brick
onwards

Table 5: English translations of three (romanized) Chinese words by the tested systems. The correct
translations are in bold. The number of translations in each cell varies because it is automatically deter-
mined by the EMD program.

7 Related Work

Following its monolingual counterpart (Mikolov et al., 2013c, inter alia), bilingual word representation
learning has attracted considerable attention. However, most of the works require parallel data as the
cross-lingual signal (Zou et al., 2013; Chandar A P et al., 2014; Hermann and Blunsom, 2014; Kočiský
et al., 2014; Gouws et al., 2015; Luong et al., 2015; Coulmance et al., 2015), making them unsuitable
for bilingual lexicon induction. Although a few exceptions exist (Mikolov et al., 2013b; Faruqui and
Dyer, 2014; Lu et al., 2015; Vulić and Moens, 2015; Shi et al., 2015; Gouws and Søgaard, 2015; Wick
et al., 2016; Ammar et al., 2016), they lack a mechanism to deal with the multiple alternative translation
prevalent cross-lingually.

The multiple alternative translation across languages is rooted in the polysemy of words within lan-
guages. In the monolingual setting, word sense disambiguation stands with a long line of research (Agirre
and Rigau, 1996, inter alia). Since the advent of word representation learning, there have been some at-
tempts to learn multiple vectors for a word, each dedicated to a single sense of the word, and therefore
known as “sense embedding”.

Existing sense embeddings can be roughly divided into two categories, depending on whether external
resources are utilized. For those that do not rely on external resources, their main idea is to employ
unsupervised methods like clustering to differentiate between multiple senses (Reisinger and Mooney,
2010; Huang et al., 2012; Neelakantan et al., 2014; Tian et al., 2014; Li and Jurafsky, 2015). For those
that do, they typically retrofit existing word vectors to sense inventories (Jauhar et al., 2015; Rothe and
Schütze, 2015), or use the resources to obtain a word sense disambiguation system, and then use it to
disambiguate words, so that word representation learning methods can be applied (Chen et al., 2014;
Iacobacci et al., 2015). An exception is the work of (Guo et al., 2014). Their external resource is parallel
data. They observe that different senses of a word usually have different translations, so disambiguation
can be thus achieved.

However, no prior research has shown how to connect sense embeddings cross-lingually, unless multi-
lingual lexical ontologies exist (Camacho-Collados et al., 2015). For bilingual lexicon induction, where
only non-parallel data and a seed lexicon are available, it is unclear whether sense embeddings can ad-
dress multiple alternative translation.

Our work complements (Zhang et al., 2016): Their work applies the Earth Mover’s Distance to the
post-processing of fixed bilingual word embeddings to retrieve word translation, while ours strives to



train better bilingual word embeddings with the EMD. In addition, we also explore the feasibility of using
the EMD for bilingual lexicon induction from non-parallel data. In computer vision, there have been a
few works that experiment with trainable ground distance in the EMD program (Wang and Guibas, 2012;
Zen et al., 2014). However, they require supervision to properly guide the training. With supervision,
their EMD program can stand alone to fit training data, while in our approach the EMD shows up as
a regularizer in the learning objective. Besides, their models fully parametrize the ground distance as
optimizable variables, whereas our model treats it as the Euclidean distance with adjustable word vectors.

8 Conclusion

In this paper, we look into multiple alternative translations prevalent across natural languages, which are
largely neglected in previous bilingual lexicon induction research. We propose to introduce the Earth
Mover’s Distance into the training of bilingual word embeddings as a natural form of regularization. We
provide strong empirical results for four language pairs to demonstrate the effectiveness of our approach.
Furthermore, we discover that our method remains reliable with rather few seed word translation pairs,
unlike the baselines exhibiting performance degradation. This advantage of our approach is particularly
desirable in realistic resource-scarce settings.
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Ivan Vulić, Wim De Smet, and Marie-Francine Moens. 2011. Identifying Word Translations from Comparable
Corpora Using Latent Topic Models. In ACL-HLT.

Fan Wang and Leonidas J. Guibas. 2012. Supervised Earth Mover’s Distance Learning and Its Computer Vision
Applications. In ECCV.

Michael Wick, Pallika Kanani, and Adam Pocock. 2016. Minimally-Constrained Multilingual Embeddings via
Artificial Code-Switching. In AAAI.

Gloria Zen, Elisa Ricci, and Nicu Sebe. 2014. Simultaneous Ground Metric Learning and Matrix Factorization
with Earth Mover’s Distance. In International Conference on Pattern Recognition.

Meng Zhang, Yang Liu, Huanbo Luan, Maosong Sun, Tatsuya Izuha, and Jie Hao. 2016. Building Earth Mover’s
Distance on Bilingual Word Embeddings for Machine Translation. In AAAI.

Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Manning. 2013. Bilingual Word Embeddings for
Phrase-Based Machine Translation. In EMNLP.


