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Listwise Ranking Functions
for Statistical Machine Translation
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Abstract—Decision rules play an important role in the tun-
ing and decoding steps of statistical machine translation. The
traditional decision rule selects the candidate with the greatest
potential from a candidate space by examining each candidate
individually. However, viewing each candidate as independent
imposes a serious limitation on the translation task. We instead
view the problem from a ranking perspective that naturally
allows the consideration of an entire list of candidates as a
whole through the adoption of a listwise ranking function. Our
shift from a pointwise to a listwise perspective proves to be a
simple yet powerful extension to current modeling that allows
arbitrary pairwise functions to be incorporated as features, whose
weights can be estimated jointly with traditional ones. We further
demonstrate that our formulation encompasses the minimum
Bayes risk (MBR) approach, another decision rule that considers
restricted listwise information, as a special case. Experiments
show that our approach consistently outperforms the baseline
and MBR methods across the considered test sets.

Index Terms—Statistical machine translation, listwise ranking
function, discriminative reranking.

I. INTRODUCTION

MACHINE translation (MT) strives to produce a target
translation from a given source sentence. In statistical

machine translation (SMT), this process is generally mod-
eled as a probability distribution over the target translations
given the source sentence. After decades of development, the
probabilistic models used for this purpose have grown from
generative models, known as source-channel models [1], to
discriminative models, known as maximum entropy or log-
linear models [2]. Meanwhile, the typical tuning1 objectives
have evolved from maximum likelihood to task-specific ob-
jectives [3].

Over the years, log-linear models with task-specific ob-
jectives have gained popularity. Their success hinges on the
extensibility of the considered features and the ability to
optimize them toward a particular evaluation metric. Despite
their popularity, they are subject to several limitations.
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1The estimation of the parameters in such a model is traditionally referred to
as tuning or development; these terms are analogous to the concept of training
in the machine learning literature. We use the term “tuning” throughout this
paper, even in machine learning contexts.

One limitation of log-linear models lies in the fact that other
candidates are ignored while examining the candidate at hand.
More specifically, for N potential translations in an N -best
list, log-linear models examine each potential translation indi-
vidually rather than as a whole, although only the translation
with the greatest potential in the N -best list is relevant for
both tuning and decoding.

Consider the illustrative example shown in Fig. 1. It consists
of a list of four candidate translations. The usual log-linear
model assigns each candidate a score that is computed entirely
based on that individual translation, referred to as the “point-
wise score”. This score may not be very accurate, as in this
example, where a poor translation receives the highest score
and is ranked in the first place in the list. A typical translation
system will then output the highest scoring candidate, dis-
carding all other potential translations. However, we observe
that the other translations are better in similar ways, while
being radically different from the first translation. If we poll
the entire list, one of the other three translations might stand
out as superior through mutual support. This can be achieved
by asking each candidate to report its similarity to all other
translations, a process that draws information from the entire
list. This similarity is represented by a “listwise score”. If we
combine both pointwise and listwise information by summing
the two types of scores, we find that the second translation
becomes the highest scoring one and will be selected.

A number of previous works have partially addressed the
limitation that the usual log-linear models face. One line of
research has introduced minimum Bayes risk (MBR) decoding
[4], which utilizes the MBR decision rule to consider the
complete N -best list with the assistance of an evaluation
metric in the selection of the translation with the greatest
potential. Another line of research has introduced the notion
of consensus. This can be seen as a variant of the MBR
approach, albeit without theoretical justification, that permits
fast decoding [5].

However, none of the above formulations offers the flexi-
bility to incorporate more than one evaluation metric into the
model. For example, Kumar and Byrne [4] noted an increase in
performance when the metric used for evaluation and decision
is “matched”. It is possible that other metrics, in combination
with the matched metric, could further boost target evaluation
performance, but the MBR decision rule forbids such experi-
mentation; this is also true for the consensus approach.

Instead, we view log-linear models from a ranking per-
spective. From this point of view, log-linear models can be
seen as ranking functions that select the translation with the
greatest potential from an N -best list by choosing the highest
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Candidate Pointwise score Listwise score Sum

Sharon with Bush hold talks 1 0.3 1.3

Bush held a talk with Sharon 0.5 1 1.5
Bush holds a talk with Sharon 0.5 0.9 1.4

Bush held talks with Sharon 0.5 0.9 1.4

Figure 1. An illustrative example demonstrating the benefit of incorporating information about the entire candidate list. The original ordering of the list
is determined by the pointwise scores, which rank a poor translation in first place. If we additionally compute the listwise scores by placing emphasis on
translations that are similar to others, then the sum of the two scores indicates the translation presented in bold as the best.

scoring one (Section III-A). In this regard, the limitation of
examining the candidates individually is essentially rooted
in the pointwise nature of the ranking functions. Naturally,
this could be resolved by adopting listwise ranking functions.
Although general listwise ranking functions are difficult to
parametrize, by virtue of the recent work of [6], we are able
to represent a listwise ranking function in terms of pairwise
functions under a natural assumption (Section III-B). We
proceed to demonstrate how these pairwise functions reduce to
features in a log-linear model that carry information gathered
from the entire N -best list (Section III-C). Unlike in previous
works that have also considers the list as a whole, our features
can be formed from any pairwise function and any number
of pairwise functions. An additional benefit of our feature
formulation approach is its simplicity, as these new listwise
features can be easily embedded back into the existing log-
linear framework and their weights can be adjusted simulta-
neously with traditional pointwise feature weights to account
for the interactions between the two types of features. The joint
tuning of pointwise and listwise feature weights is a crucial
property for a better-performing system (Section IV-D) and
distinguishes our approach from previous work (Section V-B).
Furthermore, our formulation naturally encompasses the MBR
rule, which, in our framework, would appear as a single feature
(Section III-D).

We present experiments conducted on Chinese-English
translation and demonstrate promising improvement over the
log-linear baseline and the MBR approach (Section IV-C).

II. BACKGROUND

A. Log-linear Models

Log-linear models are ubiquitous in statistical machine
translation for modeling the translation process. They define
a probability distribution over a target “English” translation e
given a source “foreign” sentence f [2]:

p (e|f ;λ) = exp {λ · h (e, f)}∑
e′ exp {λ · h (e′, f)}

, (1)

where h represents features describing facets of e as a trans-
lation for f and λ represents the feature weights, constituting
the model parameters.

To obtain estimates of the parameters, we use a tuning
set, which consists of source sentences {f}S1 , their reference
translations {r}S1 , and the candidate translations produced by a
base translation system {E (f)}S1 , each of which is in the form
of an N -best list, i.e., E (fs) = {es,1, ..., es,N}. To simplify

our notation, we write E (fs) as Es wherever no confusion
will arise from doing so. The usual objective for optimization
incorporates a task-specific evaluation metric:

min
λ

S∑
s=1

E (rs, ê (fs;λ)) , (2)

where E is an error measure, which, in our case, is (one minus)
BLEU [7], the evaluation metric to be used at test time.

Equation (2) is yet to be completed with a decision rule
for selecting a proposed translation ê (fs;λ) from the pool of
candidates Es. Traditionally, this decision rule is usually taken
to be the so-called Maximum A Posteriori (MAP) decision
rule:

ê (fs;λ) = argmax
e∈Es

p (e|fs;λ) = argmax
e∈Es

λ · h (e, fs) . (3)

Tuning is then achieved by optimizing (2) through minimum
error rate training (MERT) [3], a fast, gradient-free optimiza-
tion algorithm that has been widely used.

The same decision rule can be directly applied for decoding.
Indeed, the MAP decision rule plays a role in both decoding
and tuning in the traditional SMT landscape.

B. Minimum Bayes Risk Decoding

The MAP decision rule is arguably suboptimal. It is optimal
with respect to the 0/1 loss,

L(0/1) (r, e) =

{
1 if r 6= e

0 otherwise,
(4)

which is too harsh to be used in evaluation. For a general
loss function, the optimal decision rule is given by the MBR
decision rule [4]:

ê (fs;λ) = arg min
ei∈Es

∑
ej∈Es

L (ej , ei) p (ej |fs;λ) . (5)

Clearly, if the loss function is taken to be the 0/1 loss, then
the MBR decision rule reduces to the MAP rule.

The MBR decision rule is usually applied in decoding at
test time to select a translation that supposedly minimizes
the Bayes risk from among a pool of candidates. Kumar and
Byrne [4] have found in their experiments that the MBR
decision rule outperforms the MAP rule when the loss function
is chosen to match the test-time evaluation metric, i.e., when
L = E.

One may well wonder why this subject is worth further
investigation, as the theory seems to have already identified



3

the optimal decision rule. However, the reality is not quite the
same as the theory suggests. In practice, Es in (5) never fully
encompasses the entire candidate translation space. Further-
more, we can never be fully confident that we have provided
an accurate model of p (e|f ;λ). Indeed, these approximations
prevent us from making any definitive statement regarding
the optimality of the MBR rule. We therefore explore other
possible decision rules, considering that an optimal decision
rule is unlikely to exist in practical settings.

III. LISTWISE RANKING FUNCTIONS

We begin by formulating log-linear models as ranking
functions (Section III-A). This formulation is equivalent to
the usual probabilistic view, but it can be naturally extended to
ranking functions that consider the entire N -best list, known as
listwise ranking functions (Section III-B). From this basis, we
discover that our formulation can be directly embedded back
into the log-linear model by treating the listwise information
as features (Section III-C) and is therefore compatible with
the MERT algorithm [3].

A. Log-linear Models as Ranking Functions

For the settings considered in Section II-A, particularly for
the objective expressed in (2) and the MAP decision rule (3),
the log-linear model can be equivalently regarded as a linear
ranking function:

f (e|f ;λ) = λ · h (e, f) . (6)

This ranking function is used to derive an ordering over
the N -best list E . With the MAP decision rule, only the top-
ranked candidate that is assigned the highest value in the
list by the ranking function is selected. Because only the
ordering matters, the magnitude of λ is irrelevant. Moreover,
any monotonic transformation, such as exp, would not affect
the ordering.

This observation has been noted in previous work [5], where
the function used to derive the ordering was called a scorer.
We instead term it a ranking function, to highlight its rank-
determining nature and to use it as a stepping stone toward
our listwise extension.

B. From Pointwise Ranking Functions to Listwise

The above ranking function (6) is called pointwise because
it scores each item e without considering the other items in the
N -best list E . However, such a ranking function is restrictive
for the task at hand. Minimizing objective (2) calls for a list-
wise focus because it is equivalent to maximizing NDCG@1
[8] with the gain function 1−E, whereas Ravikumar et al. [9]
have shown that the Bayes-consistent ranking function of the
NDCG metric is inherently listwise.

A listwise ranking function scores the N -best list E as a
whole, returning a vector of scores to be sorted to yield the
ordering. For SMT, the desired listwise ranking function takes
the form

F (E ;θ) = [F1(E ;θ), . . . , Fi(E ;θ), . . . , FN (E ;θ)] ,

where the subscript of F , i ∈ {1, ..., N}, indexes the score to
be assigned to ei, the i-th candidate in E .

It is evident that pointwise ranking functions can be re-
garded as a special case of functions of this form. For such a
ranking function, we can write our decision rule as

î (f ;θ) = arg max
i∈{1,...,N}

Fi(E ;θ),

which will reduce to the MAP decision rule (3) if we use
a pointwise ranking function (6). Recall that E implicitly
depends on the source sentence f .

Although desirable, the listwise formulation of a ranking
function is cumbersome to work with because of the diffi-
culty of encoding the interactions among a list of N items.
Fortunately, Pareek and Ravikumar [6] recently addressed this
problem by assuming a natural exchangeability condition to
obtain a compact representation in the following form:

Fi (E ;θ) =
∑
t

N∏
j 6=i

gt (ei, ej ;θ) . (7)

This theory suggests that a listwise ranking function can be
constructed from appropriate pairwise functions g.

C. Listwise Ranking Functions for Statistical Machine Trans-
lation

Before proceeding, let us first examine the validity of the ex-
changeability assumption for SMT. Intuitively, exchangeability
formalizes the notion that ranking functions should depend
only on the features of items, with their positions in the N -
best list being irrelevant. This notion can be more formally
defined as follows [6].

Definition 1. (Exchangeability) A listwise ranking function F
is said to be exchangeable if F (π (E)) = π (F (E)) for every
permutation π that operates on N elements.

This is indeed a natural condition, because we wish to use
the function values to induce an ordering over the candidate
space and the induced ordering should be unaffected by the
original arbitrary ordering presented to the function. For SMT
in particular, we would like the ranking function to assign the
highest score to the best translation, regardless of the position
in which it may originally reside in the N -best list. Therefore,
the form of (7) yields the family of listwise ranking functions
that we desire.

Given the listwise representation in (7), we must decide
on the parametrization of the pairwise functions. We follow
Pareek and Ravikumar [6] in using

Fi (E ;θ) = b (ei, f ;λ)

N∏
j 6=i

exp {µ · S (ei, ej , f)} , (8)

with model parameters θ = {λ,µ}. This expression is
obtained from (7) by taking only a single term from the series
and taking the pairwise function g to be an exponential in the
pairwise function S weighted by µ, with a base function b.

In SMT, we are inclined to choose the base function to be
the traditional (exponentiated) pointwise ranking function (6):

b (e, f ;λ) = exp {λ · h (e, f)} .
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Therefore, (8) becomes

Fi (E ;θ) = exp

λ · h (ei, f) + µ ·
N∑
j 6=i

S (ei, ej , f)

 ,

which, as a ranking function, is equivalent to

Fi (E ;θ) = λ · h (ei, f) + µ ·
N∑
j 6=i

S (ei, ej , f) . (9)

Thus, the task of developing listwise ranking functions is
reduced to that of designing the pairwise function S, which
can take any form with output in any number of dimensions,
as long as we expect that form to be useful.

The form of (9) is reminiscent of the pointwise ranking
function (6), except that it is augmented with new listwise
features that gather information from the entire N -best list
through the pairwise function S, with corresponding weights
µ. Therefore, the popular MERT algorithm is directly appli-
cable to our formulation, allowing the joint tuning of λ and
µ. This is a distinctive advantage offered by our formulation,
whereas in the original form (8) as used in [6], the parameters
λ of the base function must be tuned separately beforehand
and then held fixed to proceed with the tuning of µ. We will
show that the joint tuning of the parameters is essential to
the performance improvement achieved using our approach
(Section IV-D).

D. Minimum Bayes Risk Decoding as a Special Case
Within our formulation, the MBR decision rule can be

recovered as a special case, which we demonstrate as follows.
We begin with the MBR decision rule (5), where we take

the candidate translation space E to be an N -best list and use
î to index ê (f ;λ):

î
(
f ; λ̃
)

=argmin
i

N∑
j=1

L (ej , ei) p
(
ej |f ; λ̃

)
=argmax

i

N∑
j 6=i

G (ej , ei) exp
{
λ̃ · h (ej , f)

}
.

In this derivation, we have used L (e, e) = 0 and defined a
gain function G (ej , ei) = 1−L (ej , ei). Note that in this case,
the magnitudes of the parameters matter, which we indicate
with a tilde. This decision rule can also be treated as a ranking
function:

F
(MBR)
i

(
E|f ; λ̃

)
=

N∑
j 6=i

G (ej , ei) exp
{
λ̃ · h (ej , f)

}
.

(10)
Comparing this with our ranking function (9), we recognize
that

λ = 0

S (ei, ej , f) = G (ej , ei) exp
{
λ̃ · h (ej , f)

}
would reduce (9) to (10). Note that S is taken to be a scalar.
This reflects the flexibility of our formulation in that it allows
more than one gain function to be included.

E. Features Derived from the Pairwise Function

The augmented listwise features to be added to the log-
linear model are fully specified by the pairwise function used.
They could, in principle, depend on the source sentence f ,
but such features would be difficult to design; therefore, we
neglect this dependence and hope that the baseline features
h can sufficiently capture this information. The new features
that we investigate in this paper are primarily motivated by
various evaluation metrics, as listed below.
• Sentence-level BLEU: This is intended as an approxima-

tion to the test-time evaluation metric, the corpus-level
BLEU. We implement it following [10], except that we
do not scale the reference length.

• Word error rate (WER): The string edit distance divided
by the number of words in the reference sentence [3].

• Translation edit rate (TER): An extension to the WER that
further allows a phrasal shift as a legitimate edit operation
[11].

• Meteor: A sentence-level metric that considers stemming
and word order [12].

• Cosine similarity between h (ei, f) and h (ej , f).
Because the number of candidates may differ among different
source sentences, we also include an averaged variant of each
feature above.

These choices for the pairwise function involve complex de-
pendence on the translations, which prohibits their integration
into the decoder. We therefore execute our approach within
the discriminative reranking framework [13]. A visualization
of our system architecture is presented in Fig. 2.

IV. EXPERIMENTS

A. Experimental Settings

We conducted our experiments on Chinese-English trans-
lation. Our training set consisted of 1.23M parallel sentences
containing 32.1M Chinese words and 35.4M English words.
We used a 4-gram language model trained on the Xinhua por-
tion of the English GIGAWORD corpus (398.6M words). We
used the NIST 2006 MT Chinese-English data set as the devel-
opment set and the NIST 2002-2005 and 2008 MT Chinese-
English data sets as the test sets. All corpora were lowercased
and tokenized. We measured the system performance using the
case-insensitive BLEU-4 score. Statistical significance testing
was performed with paired bootstrap resampling [14]. One or
two symbols following the reported BLEU score indicate a
significance level of p < 0.05 or p < 0.01, respectively.

We implemented our baseline using Moses [15], a phrase-
based machine translation toolkit. However, as an extension to
log-linear models, our approach can be applied to any system
that produces N -best lists. Our baseline features included 4
translation models (phrase translation probability and lexical
weighting, for both translation directions), a language model,
a word penalty, a phrase penalty, and 7 reordering models
(bidirectional msd models and a distance model), for a total
of 14 features.

After obtaining the N -best lists, we augmented them with
our new features. Their weights were tuned on the develop-
ment set using Z-MERT [16] and then used to rerank the N -



5

Training TestingTuning

Phrase 
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MERT
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Figure 2. System architecture. The core steps of our approach involve generating listwise features for the joint tuning of the model parameters and then again
at test time for reranking.

Table I
EFFECTS OF LISTWISE FEATURES

Listwise feature Dev MT 02 MT 03 MT 04 MT 05 MT 08

sBLEU 30.70 32.59 32.61 32.80 31.15 24.66

WER avg 30.58 32.58 32.23 32.66 30.91 24.90

TER avg 30.64 32.75 32.25 32.86 31.09 24.93

Meteor avg 30.66 32.44 32.10 32.66 31.09 24.78

sBLEU + Meteor avg (default) 30.76 32.87 32.44 33.00 31.38 25.01
sBLEU + WER avg + TER avg + Meteor avg 30.70 32.82 32.63 33.02 31.44 24.69

Table II
COMPARISON WITH BASELINE AND MBR APPROACHES

System Dev MT 02 MT 03 MT 04 MT 05 MT 08

Baseline 30.34 32.35 31.92 32.58 30.85 24.61

MBR 30.50 32.71 32.13 32.72 30.92 25.10

Our system 30.76∗∗++ 32.87∗∗+ 32.44∗∗++ 33.00∗∗++ 31.38∗∗++ 25.01∗∗

best lists for the test sets. These steps are illustrated in Fig.
2.

We used N = 1000 throughout our experiments unless
otherwise noted (Sections IV-F and IV-G). Following [5], we
removed duplicate translations from the N -best lists before
computing the listwise features for our system; this procedure
has the additional benefit of reducing computation time.

B. Feature Choice

In this section, we elaborate on our feature choice and
examine the relative effectiveness of the various listwise
features. Choosing among a pool of features is a non-trivial
issue because of the instability of the MERT algorithm, as
introducing irrelevant features into the model is likely to have
a detrimental effect [17]. Therefore, we followed the approach
used in [13]. We first added each of these features individually
to the baseline approach to observe the resulting improvements
over the baseline. Based on the results, we were able to deter-
mine cosine similarity to be a useless pairwise function and

excluded it from subsequent experiments. All other features
were found to be beneficial to a certain degree. Then, we
combined pairs of potential features, during which process
we found there to be no benefit in combining a pairwise
function with its averaged variant, likely because of the strong
correlation between them. This step revealed the most power-
ful feature combination in our experiments, the sentence-level
BLEU plus the averaged Meteor. The results obtained using
the various combinations highlight the benefit of incorporating
more than one pairwise function, which is impossible in the
MBR approach. Further combining of functions yielded little
gain, likely again because of the increasing overlap between
the features and the fact that increasing the number of features
may diminish the benefit that those additional features could
provide [17]. These findings are summarized in Table I, where
a suffix of avg in a feature name indicates an averaged variant
and bold typeface indicates the best figure achieved for a given
data set.

We also found that when a single listwise feature is used,
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Position Original N -best list System

1 Australia to open embassy in Manila Baseline

2 Australia to reopen embassy in Manila

3 The Australian embassy in Manila reopens
4 Australian embassy in Manila reopens
5 The Australian embassy in Manila reopened Our system

... ...

15 The Australian embassy in Manila to open MBR

Australia reopened Manila embassy Reference

Figure 3. A real example from the test set that demonstrates the benefit of reranking with the listwise features produced by our system. The sentences have
been truecased for presentation. The last row shows one of the four reference translations. Bold typeface signifies the words that make a semantic difference
in the translations.

Table III
EFFECT OF JOINT TUNING

System Dev MT 02 MT 03 MT 04 MT 05 MT 08

Baseline 30.34 32.35 31.92 32.58 30.85 24.61

No joint tuning 30.35 32.34 31.95 32.58 30.85 24.65

Joint tuning 30.76∗∗ 32.87∗∗ 32.44∗∗ 33.00∗∗ 31.38∗∗ 25.01∗∗

Table IV
COMPARISON WITH POINTWISE RERANKING

System Dev MT 02 MT 03 MT 04 MT 05 MT 08

Pointwise reranker 30.52 32.79 32.10 32.50 31.42 24.53

Pointwise reranker + listwise features 33.12∗∗ 33.00 32.98∗∗ 33.00∗∗ 31.83∗∗ 25.11∗∗

similarity functions (sentence-level BLEU and Meteor) are
assigned positive weights, whereas distance functions (WER
and TER) are assigned negative ones. This phenomenon may
reflect a trend in N -best lists that good translations are often
similar to their alternatives. However, this trend sometimes be-
comes blurred when more listwise features are added, possibly
because complex interactions between these features obscure
the signs of the weights.

In subsequent tests, we used the sentence-level BLEU plus
the averaged Meteor as our default set of listwise features.

C. Comparison with Baseline and Minimum Bayes Risk De-
coding

In this section, we report results obtained using our system
and the baseline. We additionally compare the results with
those obtained via MBR decoding using the implementation
in Moses. To determine the scaling factor that controls the
magnitude of λ̃ in the MBR method (Equation (10)), we
performed a grid search on the development set [18].

Table II summarizes the results. Our system significantly
improves on the baseline for all data sets (marked with
asterisks), with a consistent improvement ranging from 0.40 to
0.53. It also significantly improves on the MBR approach for
most data sets (marked with plus signs), with the exception that
it exhibits comparable performance on MT 08, which behaves
like an outlier, with a considerably lower BLEU compared

with the others. The MT 08 anomaly can likely be attributed
to a domain difference, because unlike the MT 02 - 05 sets,
which comprise news data, MT 08 contains a considerable
amount of informal language found on web forums.

As a concrete counterpart to the illustrative example pre-
sented in Fig. 1, Fig. 3 shows a case in which our system
successfully uses listwise information to identify a better
translation candidate. The output of our system is originally
ranked fifth in the list. In fact, all candidates in the top-five list,
except the baseline output that is originally ranked at the top,
use a form of “reopen” in their translations. This similarity, in
turn, is reflected in higher listwise scores in the output of our
system. The MBR method fails to discover this trend in the
list, possibly because of its inability to cope with the various
word forms in the absence of the Meteor feature.

D. Effect of Joint Tuning

Intuitively, joint tuning should exert a beneficial effect on
the system performance. We validated this intuition by testing
a system with joint tuning disabled. This was achieved by
fixing the 14 baseline feature weights and allowing the MERT
algorithm to adjust only the weights of the listwise features.
This mirrors the experimental setting considered in [6], where
joint tuning was unavailable.

The BLEU scores obtained using this system are reported in
Table III, alongside the corresponding results for the baseline
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Table V
EFFECT OF THE SIZE OF THE N -BEST LIST

N System Dev MT 02 MT 03 MT 04 MT 05 MT 08

100
Baseline 30.27 32.44 32.16 32.45 31.04 24.41
Reranker 30.57∗∗ 32.32 32.39∗∗ 32.45 31.02 24.78∗∗

Improvement +0.30 -0.12 +0.23 +0.00 -0.02 +0.37

500
Baseline 30.49 32.28 31.92 32.39 30.79 24.41
Reranker 30.67∗ 32.28 32.23∗∗ 32.57∗∗ 30.90 24.66∗∗

Improvement +0.18 +0.00 +0.31 +0.18 +0.11 +0.25

1000
Baseline 30.34 32.35 31.92 32.58 30.85 24.61
Reranker 30.76∗∗ 32.87∗∗ 32.44∗∗ 33.00∗∗ 31.38∗∗ 25.01∗∗

Improvement +0.42 +0.52 +0.53 +0.42 +0.53 +0.40

system and the version of our system with joint tuning. We
observe that the system without joint tuning performs only
comparably to the baseline, whereas the version with joint
tuning significantly surpasses it (marked with asterisks). We
conjecture that joint tuning opens up more parameter regions
for the MERT algorithm to explore, thereby providing the
opportunity to find better local optima. This result matches our
intuition and confirms that the joint tuning capability, which
could not be provided by previously developed systems, is
critical to our task.

E. Comparison with Traditional Discriminative Reranking

Because our model falls into the framework of discrimina-
tive reranking, we also compared its results with those of a
model that performs reranking based on pointwise features.
More specifically, we investigated the improvement achieved
by using our listwise features on top of an existing reranker.
The pointwise features that we used were 4- and 5-gram
language models trained on a superset of the baseline language
model corpus, with the addition of the AFP portion of the
English GIGAWORD corpus, amounting to 1254.8M words.

Table IV presents the additional gain achieved by a tradi-
tional reranker using our listwise features. The improvements
are significant for most data sets (marked with asterisks), and
the largest absolute increase is near 0.9. This implies that
our listwise features are complementary to these pointwise
features and provide additional information that is valuable to
the reranker.

F. Effect of the Size of the N -best List

Clearly, the choice of N has an impact on our model. A
larger N results in the availability of more candidates for
reranking and affects the computation of the features.

It is worth noting that the numbers of candidates used for
tuning and testing could be different. However, we found in
our preliminary experiments that a matched size yields the
best performance, which is intuitively reasonable. Therefore,
we adhered to Ndev = Ntest = N in our experiments. Notably,
the N value that we report is an upper bound specified to the
decoder to truncate its output. The post-processing applied to
remove duplicates approximately halved that number.

We varied the candidate size N on the set {100, 500, 1000}.
Table V summarizes the results of the comparison. We observe

that going from 100 to 500 results in more stable improvement
over the baseline and that the improvement gap widens from
500 to 1000. This indicates that exploring larger N values will
typically be beneficial when seeking better performance.

G. Running Time

The most time-demanding step of our approach is the
computation of the listwise features. We timed the computation
of the features derived from the sentence-level BLEU and the
string edit distance, whose own complexities depend on the
length of the candidates and contribute a multiplicative factor
to the overall complexity. We performed the experiments on a
2.6 GHz Linux machine.

As seen from (9), the time complexity of computation scales
quadratically with the size of the candidate space E , or as
O
(
N2
)

if we assume an upper bound N on the size to
simplify the discussion. This is verified by Fig. 4. Note that
when producing this figure, we have not removed duplicates
to avoid distorting the observed trend. As a more practical
time value, for N = 1000 with deduplication enabled, our
vanilla implementation required approximately one minute
to compute the features for all candidates for each source
sentence. This number is an average over all data sets.

The same complexity issue is encountered in the MBR
approach, which also scales quadratically. The problem can
be alleviated through parallelization because the independence
between source sentences makes this level of parallelization
trivial.

V. RELATED WORK

Our work is related to three lines of research, as discussed
below.

A. Minimum Bayes Risk and Consensus Approach

As noted before, other decision rules exist that also consider
the entire N -best list [4], [5], but they lack a mechanism
for combining multiple evaluation metrics that are potentially
useful. The ideas can be ported to a tuning objective [3], [19]
or used to invent an ad hoc objective [20]. By contrast, we
treat listwise information as features with weights to be tuned
and adhere to the objective (2) that has proven effective.
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Figure 4. Running time in seconds versus N , in a log-log plot, for the
generation of the sentence-level BLEU and string edit distance features on
MT 08 without the removal of duplicate candidates in the N -best lists. These
findings reveal the quadratic time complexity of the feature computation with
respect to N .

Tromble et al. [21] extended MBR decoding from N -
best lists to lattices, a topic that is out of the scope of this
paper. However, to permit an efficient implementation, they
approximated their gain function log(BLEU) using a linear
decomposition and set the linear weights heuristically. Kumar
et al. [18] further estimated these linear weights using MERT.
These techniques are similar in form to our approach, although
they also differ in a few ways. First, they are conceived
as an approximation to the MBR method with the goal of
efficiency, whereas our approach is motivated from the ranking
perspective as a different decision rule. Second, the pairwise
functions used in the linear approximation are no longer any
particular evaluation metric, whereas we explore combinations
of commonly used evaluation metrics. Finally, we can view
these combinations of metrics as particular instances of our
pairwise function S (cf. Equations (9) and (10)).

B. Learning to Rank

Learning to rank is a topic in machine learning with a vast
body of literature; see, e.g., [22] for a survey.

It is worthwhile to distinguish between a listwise ranking
function and a listwise tuning objective at this point. Tradition-
ally, learning-to-rank methods have been divided into point-
wise, pairwise and listwise methods [22], but this distinction is
made with respect to the adopted tuning objective, and listwise
objectives that optimize toward task-specific metrics such as
the NDCG have generally been deemed more effective. By
contrast, whether the ranking function should be pointwise
or listwise (local or global, in the terminology of [22]) has
been less extensively discussed. Indeed, prior to the work of
[6], most ranking functions were chosen to be pointwise, with
only a few exceptions [23]–[27].

For SMT, the traditional log-linear model optimized toward
the target metric (Section II-A) can be regarded as a pointwise
ranking function with a listwise tuning objective.

Our approach builds upon the work of [6], which advocates
listwise ranking functions. We seamlessly join the listwise
representation for ranking functions with the existing log-
linear framework, and we have shown that this tight integration
opens up the possibility to jointly tune the listwise feature

weights along with the traditional pointwise ones, which is
a property that is important for our task. Previous works in
which listwise ranking functions have been utilized either lack
this joint tuning property [6] or do not directly optimize a
listwise tuning objective [24]–[26], or both [23], [27].

Learning to rank has found successful application in infor-
mation retrieval [28, inter alia]. However, efforts to translate
its effectiveness to machine translation have borne much less
fruit. For example, the published results in [29] and [30] are
mixed compared with those of MERT. Their ranking functions
are pointwise, as usual. This may suggest that MERT is already
quite effective in optimizing our objective (2), and thus, it
wins over many techniques developed to optimize surrogate
objectives in learning to rank.

We note in passing that pairwise ranking optimization
(PRO) [31] is a technique developed to optimize a tuning
objective in the context of machine translation with a learning-
to-rank focus. As a tuning algorithm, it is orthogonal to our
approach, which focuses on ranking functions.

C. Discriminative Reranking
A vast body of literature on discriminative reranking also

exists in the field of machine translation [13, inter alia] and
in the broader field of natural language processing [32, inter
alia]. Such work is generally aimed at finding features that
better describe the relationship between a target translation
and a source sentence (in a pointwise fashion). These features
often have linguistic motivations. By contrast, our work does
not attempt to develop such features in the first place. Indeed,
the pairwise functions explored in this paper only loosely
relate target translations to their source sentences. Rather, they
relate candidate translations to each other. We have confirmed
in our experiment that our listwise features provide a benefit
that is complementary to that of traditional pointwise features
(Section IV-E). Nevertheless, such work and ours both fit
within the log-linear framework and take advantage of the
effectiveness of MERT.

One notable exception is the work of Ueffing and Ney [33].
Their work focuses on word-level confidence estimation, but
sentence-level confidence can be obtained by multiplying the
word-level confidence estimates and can then be used as an
additional model for reranking. Of particular relevance are
their system-based approaches to word-level confidence esti-
mation, in which statistics are computed based on translation
system output, e.g., an N -best list. However, these authors
do not report the reranking performance of their system-
based approaches. In essence, the system-based sentence-level
confidence represents a heuristic means of harvesting listwise
information outside the theoretical framework of listwise rank-
ing functions described in Section III-B. Admittedly, there are
numerous possible methods of devising heuristics, and we
attempted several in our preliminary experiments, but they
did not prove useful; this experience illustrates the value of
theoretical guidance.

VI. CONCLUSION

In this paper, we view log-linear models in statistical
machine translation from a ranking perspective. This viewpoint
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admits a natural extension to the case in which the entire N -
best list is considered, through a shift from the usual pointwise
ranking functions to listwise ranking functions. Such a formu-
lation proves to be easily incorporated into the existing log-
linear framework, with an extension that allows any number of
evaluation metrics or other pairwise functions to be included
in the model, and hence encompasses the minimum Bayes
risk approach as a special case. We have identified several
useful pairwise functions in our experiments that demonstrate
significant improvement on the usual log-linear model.

Another technical contribution of this paper lies in the pre-
sentation of a model that allows the joint tuning of pointwise
and listwise feature weights, which is a desirable property but
was not previously possible under a listwise tuning objective.

In future work, it may be worthwhile to explore other
types of pairwise functions, such as those that arise in the
case of various sparse features. We are also interested in the
interactions between our model and other tuning algorithms,
such as PRO and MIRA [34].
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