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Abstract—The hierarchical phrase-based (HPB) transla-
tion exploits the power of grammar to perform long distance
reorderings, without specifying nonterminal orientations
against adjacent blocks or considering the lexical information
covered by nonterminals. In this paper, we borrow from
phrase-based system the idea of orientation model to enhance
the reordering ability of HPB translation. We distinguish
three orientations (monotone, swap, discontinuous) of a
nonterminal based on the alignment of grammar, and select
the appropriate orientation of nonterminal using lexical
information covered by it. By incorporating the orientation
model, our approach significantly outperforms a standard
HPB system up to 1.02 BLEU on large scale NIST Chinese-
English translation task, and 0.51 BLEU on WMT German-
English translation task.

I. INTRODUCTION

The orientation model [1], [2], [3] has greatly improved

the phrase reordering performance, and becomes a neces-

sary component of phrase-based systems.1 The orientation

model specifies the phrase orientations and estimates the

orientation probabilities conditioned on the phrases. In

Figure 1, the phrase in bold rectangle (“with Sharon”)

swaps its position with previous phrase. Besides, the

prepositions “yu” in Chinese side and “with” in English

side strongly imply the swapping orientation. Therefore, it

is accurate to condition an orientation probability on the

phrase itself.

HPB translation [4] and so as other syntax-based mod-

els, on the other hand, exploit the power of grammar to

capture both short and long distance reordering. The order

of a phrase changes as the order of a nonterminal which

covers it changes. In HPB, the swapping orientation of the

phrase in bold rectangle in Figure 1 can be accomplished

by a rewrite rule:

X ⇒ 〈X juxing le huitan, held talks X〉 (1)

Unlike the orientation model in phrase-based system

which predicts a phrase orientation by the lexical infor-

mation of the phrase itself, HPB translation reorders a

phrase without considering the information of the phrase,

which offers accurate cues for the reordering orientation

[5], [6]. In HPB system, since a phrase is generalized

by a nonterminal, the system fails to consider the phrase

information covered by a nonterminal when reordering.

1Such model is often called lexicalized reordering in phrase-based
system. However, we think orientation is a more accurate representation,
since it predicts the phrase orientation in practice. Therefore, to distinct
from lexicalized reordering of HPB system, we call it orientation model
in our paper.
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Figure 1. Phase orientations for a Chinese-to-English sentence pair. The
three orientations are monotone(M), swap(S), and discontinuous (D).

Since the orientation model and HPB translation model

phrase reordering in different ways, we believe that HPB

can also benefit from specifying orientation. Consequently,

we propose an orientation model for HPB translation,

which distinguishes three types of nonterminal orienta-

tions including monotone(M), swap(S), and discontinuous

(D) based on the alignment of grammar, and selects

an appropriate orientation using the lexical information

covered by nonterminals. In the experiments, our approach

outperforms a standard HPB system up to 1.02 BLEU

on large scale NIST Chinese-English translation task, and

0.51 BLEU on WMT German-English translation task. The

results confirms that the HPB translation is really enhanced

through incorporating the orientation model. Note that, the

orientation model is defined on grammar, thus is straight to

be extended to other linguistically syntax-based systems.

II. AN ORIENTATION MODEL FOR HPB TRANSLATION

HPB translates a source language sentence into a target

language sentence by a sequence of synchronous context

free grammar (SCFG) rules. The sequence of rules {ri}
is called a derivation d. The derivation can also be

represented as a synchronous tree. Figure 2 shows the tree

representation, where the target side tree is omitted since

the grammar is synchronized.

In HPB translation, the orientation of a phrase is iden-

tical to the orientation of the nonterminal that covers it.

For the derivation tree in Figure 2, the translation of

phrase “yu shalong” is moved to the end of the sentence.

Such movement is exactly the same as the movement

of the nonterminal X2 that covers it. Consequently, we

can represent the phrase orientation probability as the

nonterminal orientation probability. For the derivation, we

set the orientation of X2 as swap and X3 as monotone.

Note that it is unnecessary to calculate the orientation

of root node X1, since no other phrase outside the root

node exists. Therefore, the orientation probability of the

derivation is represented as:

P (S|f(X2))× P (M |f(X3)) (2)
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r1 X1 ⇒ 〈bushi X2 juxing le X3,

Bush held X3 X2〉
r2 X2 ⇒ 〈yu shalong, with Sharon〉
r3 X3 ⇒ 〈huitan, talks〉

Figure 2. Derivation tree and correspondent SCFG rules. We also show the word alignment here.

where f(X) is the information about X such as the words

covered by X . Notably, such information is contextual for

HPB translation.

Formally, we calculate the orientation probability Po(d)
of a derivation d as the product of orientation probabilities

of all nonterminals except the root:

Po(d) =
∏

X∈d∧X �=root

P (o
X
|f(X)) (3)

where oX is the orientation of nonterminal X , and X ∈ d
means the nonterminals in the tree of derivation d.

Furthermore, HPB model only changes the order of

a nonterminal with its siblings. Thus, it just needs to

compare the relative position of a nonterminal with its

siblings in order to decide the orientation. This inspires us

to define the orientation based on the alignment of rule,

since a rule includes all the siblings of a nonterminal in the

right hand side. Such definition implies that the orientation

probability can be calculated along with applying rules,

thus provides a straight way to incorporate the orientation

model into traditional systems. Therefore, we transform

equation (3) into equation (5):

Po(d) =
∏

X∈d

∏

X′∈child(X)

P (o
X′ |f(X ′)) (4)

=
∏

r∈d

∏

X∈rhs(r)

P (o
X
|f(X)) (5)

Equation (4) means that the probability is also equal to

the product of orientation probabilities for every child

nonterminal X ′ of every nonterminal X . We can transfer

equation (4) into equation (5), because the child non-

terminals of a nonterminal X are the same with the

nonterminals in the right hand side rhs(r) of the rule r
for nonterminal X . For example, X1 has two children X2

and X3, while the right hand side of r1 also contains two

nonterminals X2 and X3.

Following Moses, we distinguish three nonterminal ori-

entations: monotone(M), swap(S), and discontinuous (D),

and use a bidirectional orientation model. In practice,

the bidirectional setting results two similar orientation

models: left model which refers the orientation to left

adjacent blocks and right model which refers to right

adjacent blocks. In the following sections, we first de-

scribe the definition of nonterminal orientation based on

the alignment of rule, then introduce the estimation of

orientation probabilities based on relative frequency and

discriminative approach. Finally, we give some details in

decoding.
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Figure 3. Nonterminal orientations in rule r1. We set the orientation of
X2 as swap, since it swaps its positions with the maximum left adjacent
block 〈held X3, juxing le X3〉. The orientation of X3 is monotone
comparing with block 〈held, juxing le〉.

A. Nonterminal Orientation

As shown before, the nonterminal orientation can be

determined by the alignment of rule. Figure 3 shows

the rule r1 with the alignment of both terminals and

nonterminals. It is obvious that r1 is the list of children

of node X1 by contrasting Figure 2 and Figure 3. We set

the orientation of X2 as swap, since it swaps its position

with the left adjacent block 〈held X3, juxing le X3〉.
The orientation of X3 is monotone comparing with block

〈held, juxing le〉. Note that, there are multiple choices of

adjacent blocks, and we use the one with maximum size.

In order to define the relative orders of nonterminals and

their adjacent blocks, we expand the alignment a in a rule

to include both terminal and nonterminal alignments.2 The

alignment of rule a = {(i, j)} is a set of links between

terminals or between non-terminals. A point (i, j) is a link

from rule target side αi to rule target side γj .

Formally, a block is a bispan 〈[s, t], [u, v]〉 of a rule,

which can contain both terminals and nonterminals. [s, t]
denotes the strings that spans from s to t in the rule target

side, and [u, v] denotes the strings that spans from u to v
in the rule source side. Furthermore, the bispan must be

consistent with the alignment a. The bispan is consistent

with the alignment if and only if:

∀(i, j) ∈ a : s ≤ i ≤ t⇔ u ≤ j ≤ v (6)

There maybe multiple choices of blocks adjacent to a non-

terminal. In such case, we use the one with maximum size,

since using larger granularity leads to less discontinuous

orientation instances [3]. To decide which block is larger,

we first compare their target spans, and if their target sizes

are equal we then compare source spans.

We use bidirectional setting as orientation model in

Moses. In practice, the bidirectional setting results two

similar orientation models: left model which refers the

2Such alignment of a rule comes from extraction. During rule extrac-
tion, we retain the alignment information in the extracted rules. If a rule
is observed with more than one set of alignment, we only keep the most
frequent one.
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orientation to left adjacent blocks and right model which

refers the orientation to right adjacent blocks. Given the

above definitions, we can identify the orientation now.

An alignment of a nonterminal X must be one-to-one

alignment, which represents as (i
X ,jX ). Thus, the left

orientation model is defined as following:

• o = M , if a block lies at (i
X
− 1, j

X
− 1).

• o = S, if a block lies at (iX − 1, jX + 1).

• o = D, otherwise.

Similarly, we define the orientation of right direction as:

• o = M , if a block lies at (iX + 1, jX + 1).

• o = S, if a block lies at (i
X
+ 1, j

X
− 1).

• o = D, otherwise.

B. Training

The basic element of the orientation model is nontermi-

nal orientation probability P (o
X |f(X)). The probability

can be calculated by relative frequency estimation or by

discriminative training. Both training methods use the

same instances extracted from word alignment corpus.

Relative Frequency Estimation: This method esti-

mates P (o
X |f(X)) by relative frequency.3 If f(X) means

the words covered by the nonterminal, then it the same

with Moses. However, the maximum size of phrases

covered by X in HPB system is larger than the maximum

size of phrase in phrase-based system. We will face

sparseness problem if we directly use the entire phrase.

Alternatively, we use boundary words covered by X ,

which are informative for the reordering of phrases [7].

For a nonterminal, there are four boundary words: left

boundary word in target side, right boundary word in target

side, left boundary word in source side, and right boundary

word in source side. Suppose the nonterminal X1 is not a

root node and the orientation is S, then the probability is

P (S|f(X1)) ≈ P (S|bush, Sharon,

bushi, huitan) (7)

Discriminative Training: We can also calculate the

orientation probabilities by discriminative training [7], [8].

In this way, we can utilize arbitrary features to improve the

performance of model. We use maximum entropy model

to estimate the probability P (o
X
|f(X))

P (oX |f(X)) =
exp[

∑
i λihi(oX

, f(X))]∑
o′ exp[

∑
i λihi(o′, f(X))]

(8)

where hi is feature function, λi is the feature weight of

hi. In addition to the boundary word features, we also use

the linear context features, which is the surrounding words

of nonterminals. Similar to boundary word features, there

are four types of linear context features, including left

adjacent words and right adjacent words in both source

and target side. Such words provide good evidences for

the syntax type of a string, and have been widely used in

unsupervised parsing.

3we use add 0.1 for smoothing the probability.

Extraction: We extract orientation instances from

word alignment parallel corpus. The extraction process

is similar with phrase extraction. For each bispan, we

calculate its maximum adjacent block. Given the adjacent

block, we decide the orientations of the bispan. If there is

not any adjacent block, then it is a discontinuous orienta-

tion. After identifying the orientation, we can extract an

instance with the orientation label of the bispan as well

as the related words. We limit the source size of a bispan

to 10 (same as initial phrase size in HPB system), but do

not limit the size of adjacent blocks. Given such instances,

we can estimate the probability by relative frequency or

by maximum entropy training.

C. Decoding
We incorporate the orientation model into traditional

HPB system under the log-linear framework [9]. We assign

three distinct features for each orientation category like

Moses, rather than using the log probability of the orien-

tation model. This means that the probability of equation

(5) is divided into three feature scores for each orientation.

For example the probability of swapping orientation is

calculated by

Po=S(d) =
∏

r∈d

∏

X∈rhs(r)

P (o
X
= S|f(X)) (9)

Considering there are two types of orientation models

indeed, this results 6 new features. The feature weights are

rescaled by minimum error rate training [10]. In this way,

we can optimize the weights of each orientation according

to its effect on translation quality in terms of BLEU.
During decoding, we search the best translation using

CKY algorithm with cube pruning [4]. Since the nonter-

minal orientation is decided by the rule, we can calculate

the nonterminal orientation before decoding. Note that it’s

possible that the linear context feature of a nonterminal

may be non-local. For example, the right adjacent word

of X2 in target side is unknown when applying the rule

r1. We simplify this problem to only consider those words

cover by current rule. In this way, we can use as many

lexicalized features as possible while maintain simplicity.

OOV may occur during decoding. In such case, we just

set the three orientations with equal probability.

III. EXPERIMENTS

Our main experiments work on the Chinese-English

translation task. The bilingual training data contains 1.5M

sentence pairs with 42.3M Chinese words and 48.2M

English words, which come from subsets of LDC data.4

The monolingual data for training English language model

includes the Xinhua portion of the GIGAWORD corpus,

which contains 238M English words. We used the NIST

evaluation sets of 2002 (MT02) as our development data

set, and sets of MT03/MT04/MT05 as test sets.
SCFG rules were extracted as described in Chiang [4]

and a 4-gram language model was trained on the mono-

lingual data. We extracted the orientation instances from

4including LDC2002E18, LDC2003E07, LDC2003E14, Hansards por-
tion of LDC2004T07, LDC2004T08 and LDC2005T06.
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Table I
PERCENTAGE OF ORIENTATION INSTANCES.

Direction o = M o = S o = D

Left 65.2% 7.0% 27.8%

Right 65.3% 8.7% 26.0%

Table II
BLEU SCORE FOR CHINESE-ENGLISH TRANSLATION TASKS. **

MEANS SIGNIFICANTLY BETTER THAN Baseline (p < 0.01).

System MT03 MT04 MT05

Baseline 34.59 35.54 33.11

+orq 35.12 36.19** 33.99**

+ome 35.34** 36.56** 34.01**

Impr. +0.75 +1.02 +0.90

word aligned bilingual corpus. We used minimum error

rate training [10] for optimizing the feature weights. Case

insensitive NIST BLEU4 was used to measure translation

performance.

A. Result on Chinese-English Task

We extract 158.5 million orientation instances from the

bilingual data. Note that the total number of instances of

left direction is same as the number of right direction,

since for each bispan we extract an instance for left

direction and an instance for the right direction either.

Table I shows the percentage of each orientation. Although

the swapping orientations account for only 7.0% and

8.7% respectively, they are important for the probability

estimation.

Table II shows the result on the Chinese-English transla-

tion task. Enhanced by the orientation model, our approach

significantly outperforms the baseline system. When using

frequency estimation (+orq), the improvement ranges from

0.53 to 0.88 point. If the orientation model is learned by

discriminative training (+ome), the improvement increase

to range from 0.75 to 1.02. The discriminative training

is slightly higher than relative frequency estimation. This

may results from the fact that discriminative method uses

more lexical information. Therefore, we only compare the

result between +ome and baseline in the following section.

The result indicates that the HPB system does benefit from

the orientation model.

B. Result on German-English Task

We also compare the performances of baseline system

and +ome system on a different language pair which is

German-English. The bilingual data we used is Europarl

V6 German-English corpus, including 1.6M sentence

pairs. We use the English part of the bilingual corpus to

train the language model. The development set is newstest

2008 and test set is newstest 2009 (WMT09).

Tested on the WMT09. +ome system (18.21) outper-

forms the baseline system (17.70) by 0.51 point, which is

less than the improvement on Chinese to English. The

reason may be that German is closer to English than

Chinese to English. Therefore, there are less swapping

orientations (account for 4.0% during extraction) between

German and English. This leaves a tight room for the

orientation model to show its effect.

IV. CONCLUSION AND FUTURE WORK

We propose an orientation model for HPB translation,

and confirm that the HPB system can also benefit from ori-

entation model which has been wildly used in traditional

phrase-based system.

Our method directly defines the nonterminal orientation

based on the grammar, therefore, it’s straight to be ex-

tended to other linguistic syntax-based systems including

STSG-based translation and string-dependency. We be-

lieve that linguistic syntax-based systems can also benefit

from specifying the nonterminal orientation and using

lexical information of nonterminals. Another direction is

to improve the discriminative training of orientation model

with more features, such as length features and linguistical

features.
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